Filter only Standard rows by boolean indexing and for new DataFrame use constructor:
a = df.loc[df['account_type'] == 'Standard', 'cost'].sum()
print (a)
2.0
df = pd.DataFrame([['Standard', a]], columns=['account_type',  'cost'])
print (df)
  account_type  cost
0     Standard   2.0
If all values are Standard:
df = pd.DataFrame([['Standard', df['cost'].sum()]], columns=['account_type',  'cost'])
And if want all possible acount_type values is possible aggregate sum:
df = pd.DataFrame([
['Standard1', 0.2],
['Standard1', 0.3],
['Standard1', 0.2],
['Standard2', 0.4],
['Standard2', 0.6],
['Standard', 0.3]], columns=['account_type',  'cost'])
print (df)
  account_type  cost
0    Standard1   0.2
1    Standard1   0.3
2    Standard1   0.2
3    Standard2   0.4
4    Standard2   0.6
5     Standard   0.3
df1 = df.groupby('account_type', as_index=False)['cost'].sum()
print (df1)
  account_type  cost
0     Standard   0.3
1    Standard1   0.7
2    Standard2   1.0
EDIT:
If need sum of all numeric columns:
df = pd.DataFrame({
         'account_type':['Standard'] * 5 + ['another val'],
         'B':[4,5,4,5,5,4],
         'C':[7,8,9,4,2,3],
         'D':[1,3,5,7,1,0],
         'E':[5,3,6,9,2,4],
         'F':list('aaabbb')
})
print (df)
  account_type  B  C  D  E  F
0     Standard  4  7  1  5  a
1     Standard  5  8  3  3  a
2     Standard  4  9  5  6  a
3     Standard  5  4  7  9  b
4     Standard  5  2  1  2  b
5  another val  4  3  0  4  b
cols = df.select_dtypes(np.number).columns
s = df.loc[df['account_type'] == 'Standard', cols].sum()
print (s)
B    23
C    30
D    17
E    25
dtype: int64
df1 = s.to_frame().T
df1.insert(0, 'account_type', 'Standard')
print (df1)
  account_type   B   C   D   E
0     Standard  23  30  17  25