I have a requirement, wherein I have keep certain data (which can be anything pandas dataframe or any ML trained model) always available to all daemon processes created using multiprocessing module. Mostly I wont be requiring to modify this data but only use it. Multiprocessing modules provides various mechanisms like Value, Manager as explained in this answer. Does it makes sense to add such data to the separate module and access it from different processes, instead of using Value or Array.
common_data.py (contains common data to be shared by processes)
worker_specific_conf = None
common_conf = None
list = [1,2,3]
libX.py (contains functions which simply prints info from common_data.py)
import common_data as cmn
from posix import getpid
def functionX():
    print(str(getpid()) + " : " + str(cmn.worker_specific_conf) + " : " + str(cmn.common_conf))
def functionY():
    print(str(getpid()) + " : " + str(cmn.worker_specific_conf) + " : " + str(cmn.common_conf))
def functionList():
    print(str(getpid()) + " : " + str(cmn.worker_specific_conf) + " : " + str(cmn.list))
def functionDf():
    print(str(getpid()) + " : " + str(cmn.worker_specific_conf) + " : " + str(cmn.df))
workers.py (Run this, it creates multiple workers which access data from common_data.py using libX.py)
import uuid
import libX
import multiprocessing as mu
from time import sleep
import common_data as cmn #
from random import random
import pandas as pd
def worker(a):
    #global my_id  
    sleep(random())
    cmn.worker_specific_conf = uuid.uuid4() # 
    #my_id= uuid.uuid4()
    libX.functionX()
    sleep(random())
    libX.functionY()
    sleep(random())
    libX.functionList()
    sleep(random())
    libX.functionDf()
data = [1,2,3,4,5]
df = pd.DataFrame(data)
cmn.df = df    #adding data to data sharing module dynamically
cmn.common_conf = random()
cmn.list.append(4)
pool = mu.Pool(processes = 2)
pool.map(worker, range(3))
Is this approach ok if I just want to be able to read shared data from different processes?
Output
6732 : d08673d2-1d8f-4f87-b9ad-d1389ea564d6 : 0.3915408966829501
6732 : d08673d2-1d8f-4f87-b9ad-d1389ea564d6 : 0.3915408966829501
6732 : d08673d2-1d8f-4f87-b9ad-d1389ea564d6 : [1, 2, 3, 4]
12152 : af373f13-35b5-47b2-9736-5b19ee028c9c : 0.3915408966829501
6732 : d08673d2-1d8f-4f87-b9ad-d1389ea564d6 :    0
0  1
1  2
2  3
3  4
4  5
6732 : c629d9c3-f439-4818-ac79-1340f98470ea : 0.3915408966829501
12152 : af373f13-35b5-47b2-9736-5b19ee028c9c : 0.3915408966829501
12152 : af373f13-35b5-47b2-9736-5b19ee028c9c : [1, 2, 3, 4]
6732 : c629d9c3-f439-4818-ac79-1340f98470ea : 0.3915408966829501
12152 : af373f13-35b5-47b2-9736-5b19ee028c9c :    0
0  1
1  2
2  3
3  4
4  5
6732 : c629d9c3-f439-4818-ac79-1340f98470ea : [1, 2, 3, 4]
6732 : c629d9c3-f439-4818-ac79-1340f98470ea :    0
0  1
1  2
2  3
3  4
4  5