I am having a DataFrame below -
from pyspark.sql.functions import col, when, length, lit, concat
values = [(1,'USA','12424','AB+'),(2,'Japan','63252','B-'),(3,'Ireland','23655',None),(4,'France','57366','O+'),
          (5,'Ireland','82351','A-'),(6,'USA','35854','B+'),(7,'Ireland','5835','AB-'),(8,'USA','95255','B+')]
df = sqlContext.createDataFrame(values,['id','country','postcode','bloodgroup'])
df.show()
+---+-------+--------+----------+
| id|country|postcode|bloodgroup|
+---+-------+--------+----------+
|  1|    USA|   12424|       AB+|
|  2|  Japan|   63252|        B-|
|  3|Ireland|   23655|      null|
|  4| France|   57366|        O+|
|  5|Ireland|   82351|        A-|
|  6|    USA|   35854|        B+|
|  7|Ireland|    5835|       AB-|
|  8|    USA|   95255|        B+|
+---+-------+--------+----------+
I need to make changes in columns postcode & bloodgroup according to the following conditions, as summarised in this rough python pseudocode -
# Efficient (pseudocode 1)
if country == 'Ireland':
    if length(postcode) == 4:
        postcode = '0'+postcode   # Append 0 to postcode incase it's 4 digit.
    if bloodgroup == null: 
        bloodgroup = 'Unknown'
As you can see in the pseudocode above, the check country == 'Ireland' was done only once as it was a common clause in the two conditions. Doing the other way by coupling this clause with the other two conditions using and would have been inefficient -
# Inefficient (pseudocode 2)
if country == 'Ireland' and length(postcode) == 4:
        postcode = '0'+postcode   
if country == 'Ireland' and bloodgroup == null: 
        bloodgroup = 'Unknown'
I am using PySpark and the only way I know how to do this is as follows -
df = df.withColumn('postcode',when((col('country') == 'Ireland') & (length(col('postcode')) == 4),concat(lit('0'),col('postcode'))).otherwise(col('postcode')))
df = df.withColumn('bloodgroup',when((col('country') == 'Ireland') & col('bloodgroup').isNull(),'Unknown').otherwise(col('bloodgroup')))
df.show()
+---+-------+--------+----------+
| id|country|postcode|bloodgroup|
+---+-------+--------+----------+
|  1|    USA|   12424|       AB+|
|  2|  Japan|   63252|        B-|
|  3|Ireland|   23655|   Unknown|
|  4| France|   57366|        O+|
|  5|Ireland|   82351|        A-|
|  6|    USA|   35854|        B+|
|  7|Ireland|   05835|       AB-|
|  8|    USA|   95255|        B+|
+---+-------+--------+----------+
But, this corresponds to the inefficient pseudocode I wrote above, because we are checking country == 'Ireland' two times. I have checked the executionPlan using df.explain() and it does not do any automatic optimization, which I thought catalyst might to. 
How can we write a PySpark code corresponding to pseudocode 1, where we do the check of country once and then test the 2 conditions?
