LDPE_ester_80 <- read.table(text="Time  Value   SampleID
0   0.043501842 PP_0m_3a
0   0.062837605 PP_virgin_1a
0   0.047448064 PP_virgin_1b
0   0.06169221  PP_virgin_2a
30  0.164727573 PP_1_mhnes_UV_1a
30  0.143102841 PP_1m_1a
30  0.172545413 PP_1_mhnes_UV_1b
30  0.169354044 PP_1m_2a
60  0.223527391 PP_2_mhnes_UV_1a
60  0.134201756 PP_2m_1b
60  0.177466856 PP_2_mhnes_UV_1b
60  0.194665864 PP_2m_3b
60  0.281681336 PP_2m_4b
90  0.41039937  PP_3m_1a
90  0.398709677 PP_3m_1b
90  0.339117621 PP_3m_2a
90  0.379362836 PP_3m_3b
120 0.601786493 PP_4m_1a
120 0.784720551 PP_4m_2b
120 0.58218528  PP_4m_3a
120 0.586435863 PP_4m_3b
150 1.008573326 PP_5m_1a
150 1.00662725  PP_5m_1b
150 0.435590375 PP_5m_3a
150 0.57474698  PP_5m_4a", header=TRUE)
After linear regression i found that the exponential model had the best fit. But in ggplot doesn't perform well. the model is the :
exp.model <-lm(log(Value) ~ Time, data=LDPE_ester_80) 
and the ggplot :
ggplot(LDPE_ester_80, aes(Time, Value) ) +
    geom_point() +   
    stat_smooth(method = lm, formula = log(y) ~ x, fill="mediumorchid4", colour="mediumorchid4", size=1.5, alpha = 0.2)+
    theme_classic() + 
    theme(text = element_text (family = "Calimbri", size = 12))+
    geom_point(shape=8, size=4, color="blue") + 
    ggtitle("exponetial regression") 
I am sure that the mistake is very simple to find but i haven't yet!
 
     
    
 
    
 
    