I have the following Pandas Dataframe (named dx):
                                    _id  user_type
0  {'$oid': '5b9058462f38434ab0d85cd3'}          1
1  {'$oid': '5b9058462f38434ab0d85ce9'}          1
2  {'$oid': '5b9058462f38434ab0d85ced'}          1
3  {'$oid': '5b9058462f38434ab0d85cee'}          1
4  {'$oid': '5b9058462f38434ab0d85cef'}          1
It came from a big JSON (more or less 500.000 rows and more columns then this example), as you can see the _id contain a nested JSON.
For this example, my target is to get a new column named oid with the oid code:
                                    _id  user_type                       oid
0  {'$oid': '5b9058462f38434ab0d85cd3'}          1  5b9058462f38434ab0d85cd3
1  {'$oid': '5b9058462f38434ab0d85ce9'}          1  5b9058462f38434ab0d85ce9
2  {'$oid': '5b9058462f38434ab0d85ced'}          1  5b9058462f38434ab0d85ced
3  {'$oid': '5b9058462f38434ab0d85cee'}          1  5b9058462f38434ab0d85cee
4  {'$oid': '5b9058462f38434ab0d85cef'}          1  5b9058462f38434ab0d85cef
I achieved the results using the following snippet:
dx['oid']=None
for i in dx.index:
     dx['oid'][i]=dx.at[i,'_id']['$oid']
This give me what I am looking for but it is very very slow. It takes 3-4 minutes to populate the column of the example, which has only 5 rows!
How can I optimize the creation of a new column based on other columns with JSON values?
I can't use regex because nested JSON is core complex then the one in the example.
 
     
    