This is the sample data you posted in your comment:
data <-read.table(text="       x1    x2    x3     x4    x5    x6   x7   x8    x9
                        1003    0  45.7     0   22.9     0  13.7    0    0  23.1 
                        1004 22.2     0  13.2      0   5.4     0  9.7    0     0 
                        1005    0     0     0     12   2.1     0    0  3.2     0  
                        1006  1.2     0   1.2      0  43.9  43.9    0    0  57.6",
                    header=T)
You can use dplyr and tidyverse to acheive this. 
The following code will give you the maximum three columns across all the rows:
library(dplyr)
library(tidyverse)
data %>% 
  rownames_to_column() %>%
  gather(column, value, -rowname) %>%
  group_by(rowname) %>% 
  arrange(desc(value)) %>% 
  head(3) 
This will give you the following result:
# A tibble: 3 x 3
# Groups:   rowname [3]
#   rowname column value
#   <chr>   <chr>  <dbl>
# 1 1006    x9      57.6
# 2 1003    x2      45.7
# 3 1006    x5      43.9
If you want to get the maximum three values for each row, you can do it as follows:
result <- data %>% 
  rownames_to_column() %>%
  gather(column, value, -rowname) %>%
  group_by(rowname) %>% 
  mutate(max = rank(-value)) %>%
  filter(max <= 3) %>% 
  arrange(rowname, max)
Which will give you the following result:
# A tibble: 12 x 4
# Groups:   rowname [4]
#    rowname column value   max
#    <chr>   <chr>  <dbl> <dbl>
#  1 1003    x2      45.7   1  
#  2 1003    x9      23.1   2  
#  3 1003    x4      22.9   3  
#  4 1004    x1      22.2   1  
#  5 1004    x3      13.2   2  
#  6 1004    x7       9.7   3  
#  7 1005    x4      12     1  
#  8 1005    x8       3.2   2  
#  9 1005    x5       2.1   3  
# 10 1006    x9      57.6   1  
# 11 1006    x5      43.9   2.5
# 12 1006    x6      43.9   2.5
To summarize the result for each row, use the following code:
result %>% 
  mutate(result = paste0(column, "=", value, collapse = ", ")) %>% 
  select(result) %>% 
  distinct()
Which will give you the following result:
# A tibble: 4 x 2
# Groups:   rowname [4]
#   rowname result                   
#   <chr>   <chr>                    
# 1 1003    x2=45.7, x9=23.1, x4=22.9
# 2 1004    x1=22.2, x3=13.2, x7=9.7 
# 3 1005    x4=12, x8=3.2, x5=2.1    
# 4 1006    x9=57.6, x5=43.9, x6=43.9
Hope it helps.