You can extract the parameters of the model from the list of models using sapply function. Then aggregate these parameters in a data frame.
Please see the code below together with simulated list of models for logistic regression. 
set.seed(123)
# simulation
# generates list of 100 models
xs <-  replicate(
  n = 100, 
  expr = {
    x <- rnorm(1000)          
    z <- 1 + 2 * x        
    pr <- 1 / (1 + exp(-z))         
    y <- rbinom(1000, 1, pr)      
    #now feed it to glm for logistic regression
    model <- glm(y ~ x, family = "binomial")
    model
  },
  simplify = FALSE
)
# list of models created
# now let's create a data frame
# extracting parameter from the models
summary(xs[[1]])
df <- data.frame(
  model = seq_along(xs),
  aic = sapply(xs, AIC),
  null_deviance = sapply(xs, function(x) x$null.deviance),
  df_residual = sapply(xs, function(x) x$df.residual)
)
head(df)
Output:
  model      aic null_deviance df_residual
1     1 867.0781      1259.696         998
2     2 853.3573      1311.370         998
3     3 904.3534      1276.693         998
4     4 922.6175      1296.127         998
5     5 884.0100      1271.172         998
6     6 878.9568      1289.871         998