After performing group-by, my new df has 3 level multindex. I need to access all rows with 'ZEBRA' labels; which is contained in the 3rd level index. I'm trying to use df.loc but unable to do so. I thought of iterating through the labels, but that will have to be a nested loop to make below; which makes me feel I'm not thinking along the right lines, there must be a much easier. 
> indexlevel1_value1->indexlevel2_value1>indexlevel3_'stabilizer' 
> indexlevel1_value1->indexlevel2_value2>indexlevel3_'stabilizer' 
> indexlevel1_value1->indexlevel2_value3>indexlevel3_'stabilizer' 
> ................... 
> indexlevel2_value1->indexlevel2_value1>indexlevel3_'stabilizer'
This question looks close - Selecting rows in a MultiIndex dataframe by index without losing any levels but focused on first level index.
import pandas as pd
import numpy as np
df = pd.DataFrame({'A' : ['foo', 'bar', 'foo', 'bar',
                             'foo', 'bar', 'foo', 'foo',
                             'bar', 'foo', 'bar','foo', 
                              'bar','foo' ],
                         'B' : ['one', 'one', 'two', 'three',
                                'two', 'two', 'one', 'three',
                                'two', 'three','two', 'two', 
                                'one', 'three'],
                         'C' : ['MR', 'ZEBRA', 'KID', 'ZEBRA', 
                                'MOS', 'ALPHA', 'ZULU', 'ZEBRA',
                               'TREE','PLANT', 'JOOMLA','ZEBRA',
                               'MOS','ZULU'],
                           'D' : np.random.randn(14)})  
grouped = df.groupby(['A', 'B','C'])
grouped.count()
| A   | B     | C      | D |
|-----|-------|--------|---|
| bar | one   | MOS    | 1 |
|     |       | ZEBRA  | 1 |
|     | three | ZEBRA  | 1 |
|     | two   | ALPHA  | 1 |
|     |       | JOOMLA | 1 |
|     |       | TREE   | 1 |
| foo | one   | MR     | 1 |
|     |       | ZULU   | 1 |
|     | three | PLANT  | 1 |
|     |       | ZEBRA  | 1 |
|     |       | ZULU   | 1 |
|     | two   | KID    | 1 |
|     |       | MOS    | 1 |
|     |       | ZEBRA  | 1 |
newdf= grouped.count()
newdf.loc[('bar','three','ZEBRA')]
#1
Desired:
| A   | B     | C     | D |
|-----|-------|-------|---|
| bar | one   | ZEBRA | 1 |
| bar | three | ZEBRA | 1 |
| foo | three | ZEBRA | 1 |
| foo | two   | ZEBRA | 1 |
 
     
    