I did run a logistic regression model fit in R for some dataset. I can see the Coefficients per predictor via summary(model_fit), but now I need to store them in a data frame. Below are my values how I see them via summary.
Coefficients:
                             Estimate Std. Error z value Pr(>|z|)  
(Intercept)                -4.387e+00  2.734e+00  -1.605   0.1086  
GDP_PER_CAP                -6.888e-05  3.870e-05  -1.780   0.0751 .
CO2_PER_CAP                 1.816e-01  7.255e-02   2.503   0.0123 *
PERC_ACCESS_ELECTRICITY    -5.973e-03  1.291e-02  -0.463   0.6437  
ATMS_PER_1E5               -5.749e-03  8.181e-03  -0.703   0.4822  
PERC_INTERNET_USERS        -2.146e-02  2.106e-02  -1.019   0.3083  
SCIENTIFIC_ARTICLES_PER_YR  3.319e-05  1.650e-05   2.011   0.0443 *
PERC_FEMALE_SECONDARY_EDU   1.559e-01  6.428e-02   2.426   0.0153 *
PERC_FEMALE_LABOR_FORCE    -1.265e-02  1.470e-02  -0.860   0.3896  
PERC_FEMALE_PARLIAMENT     -4.802e-02  2.087e-02  -2.301   0.0214 *
dataframe <- dataframe0 %>%
  mutate(EQUAL_PAY = relevel(factor(EQUAL_PAY), "YES"))
set.seed(1)
trn_index = createDataPartition(y = dataframe$EQUAL_PAY, p = 0.80, list = FALSE)
trn_equalpay = dataframe[trn_index, ]
tst_equalpay = dataframe[-trn_index, ]
equalpay_lgr = train(EQUAL_PAY ~ .-EQUAL_WORK -COUNTRY, method = "glm",
               family = binomial(link = "logit"), data = trn_equalpay,
               trControl = trainControl(method = 'cv', number = 10))
???? coefficients <- summary(equalpay_lgr)
 
     
    