Here's what I have in my dataframe-
RecordType    Latitude    Longitude    Name
  L             28.2N        70W       Jon
  L             34.3N        56W       Dan
  L             54.2N        72W       Rachel
Note: The dtype of all the columns is object.
Now, in my final dataframe, I only want to include those rows in which the Latitude and Longitude fall in a certain range (say 24 < Latitude < 30 and 79 < Longitude < 87).
My idea is to apply a function to all the values in the Latitude and Longitude columns to first get float values like 28.2, etc. and then to compare the values to see if they fall into my range. So I wrote the following-
def numbers(value):
    return float(value[:-1])
result[u'Latitude'] = result[u'Latitude'].apply(numbers)
result[u'Longitude'] = result[u'Longitude'].apply(numbers)
But I get the following warning-
Warning: 
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy
I'm having a hard time understanding this since I'm new to Pandas. What's the best way to do this?
 
     
    