I optimized my keras model using hyperopt. Now how do we save the best optimized keras model and its weights to disk.
My code:
from hyperopt import fmin, tpe, hp, STATUS_OK, Trials
from sklearn.metrics import roc_auc_score
import sys
X = []
y = []
X_val = []
y_val = []
space = {'choice': hp.choice('num_layers',
                    [ {'layers':'two', },
                    {'layers':'three',
                    'units3': hp.uniform('units3', 64,1024), 
                    'dropout3': hp.uniform('dropout3', .25,.75)}
                    ]),
            'units1': hp.choice('units1', [64,1024]),
            'units2': hp.choice('units2', [64,1024]),
            'dropout1': hp.uniform('dropout1', .25,.75),
            'dropout2': hp.uniform('dropout2',  .25,.75),
            'batch_size' : hp.uniform('batch_size', 20,100),
            'nb_epochs' :  100,
            'optimizer': hp.choice('optimizer',['adadelta','adam','rmsprop']),
            'activation': 'relu'
        }
def f_nn(params):   
    from keras.models import Sequential
    from keras.layers.core import Dense, Dropout, Activation
    from keras.optimizers import Adadelta, Adam, rmsprop
    print ('Params testing: ', params)
    model = Sequential()
    model.add(Dense(output_dim=params['units1'], input_dim = X.shape[1])) 
    model.add(Activation(params['activation']))
    model.add(Dropout(params['dropout1']))
    model.add(Dense(output_dim=params['units2'], init = "glorot_uniform")) 
    model.add(Activation(params['activation']))
    model.add(Dropout(params['dropout2']))
    if params['choice']['layers']== 'three':
        model.add(Dense(output_dim=params['choice']['units3'], init = "glorot_uniform")) 
        model.add(Activation(params['activation']))
        model.add(Dropout(params['choice']['dropout3']))    
    model.add(Dense(1))
    model.add(Activation('sigmoid'))
    model.compile(loss='binary_crossentropy', optimizer=params['optimizer'])
    model.fit(X, y, nb_epoch=params['nb_epochs'], batch_size=params['batch_size'], verbose = 0)
    pred_auc =model.predict_proba(X_val, batch_size = 128, verbose = 0)
    acc = roc_auc_score(y_val, pred_auc)
    print('AUC:', acc)
    sys.stdout.flush() 
    return {'loss': -acc, 'status': STATUS_OK}
trials = Trials()
best = fmin(f_nn, space, algo=tpe.suggest, max_evals=100, trials=trials)
print 'best: '
print best
 
     
     
     
    