I have a dataframe detailing some statistics of store revenues:
#Create data
data = {'Day': [1,1,2,2,3,3],
        'Where': ['A','B','A','B','B','B'],
        'What': ['x','y','x','x','x','y'],
        'Dollars': [100,200,100,100,100,200]}
index = range(len(data['Day']))
columns = ['Day','Where','What','Dollars']
df = pd.DataFrame(data,  index=index, columns=columns)
df
and a dataframe with some informations on the stores (longitude and latitude let's say):
Create data
data = {'Where': ['A','B'],
        'Lon': [10,11],
        'Lat': [20,22]}
index = range(len(data['Where']))
columns = ['Where','Lon','Lat']
df2 = pd.DataFrame(data,  index=index, columns=columns)
df2
 I want to add the information of the second dataframe into the first one. My best try was:
I want to add the information of the second dataframe into the first one. My best try was:
df3=df
df3['Lon'] = df2[df2.Where == df.Where, 'Lon']
but this throws an error:
ValueError: Can only compare identically-labeled Series objects
What is the correct way of doing this?

 
     
    