Start with what you know, then figure out a bit here and a bit there until there are no unknowns.
Here is one possibility:
Call the unknown types FOO, F, G, X, and Y, respectively.
Then look for something small and easy and start assigning types.
(g x)
is clearly an application of a function to one argument.
Set X = a and G = a -> b.
Then look at the enclosing expression:
(f x (g x) y)
| |
v v
a b
So far, we know that F = a -> b -> Y -> C, for some C.
Go outwards again:
f (f x (g x) y) y
Since both x and (f x (g x) y) are first arguments to f, they must be the same type a, and the same idea applies to y and (g x), giving them the type b.
So, F = a -> b -> b -> a and, since the outer f is only given two arguments, the type of the right-hand side must be b -> a.
Thus
X = a
Y = b
G = a -> b
F = a -> b -> b -> a
FOO = (a -> b -> b -> a) -> (a -> b) -> a -> b -> (b -> a)
And, since arrows associate to the right, FOO is equivalent to
(a -> b -> b -> a) -> (a -> b) -> a -> b -> b -> a