I've seen asyncio.gather vs asyncio.wait, but am not sure if that addresses this particular question.  What I'm looking to do is wrap the asyncio.gather() coroutine in asyncio.wait_for(), with a timeout argument.  I also need to satisfy these conditions:
- return_exceptions=True(from- asyncio.gather()) - rather than propagating exceptions to the task that awaits on- gather(), I want to include exceptions instances in the results
- Order: retain the property of asyncio.gather()that the order of results is the same as the order of the input. (Or otherwise, map the output back to the input.).asyncio.wait_for()fails this criteria and I'm not sure of ideal way to achieve it.
The timeout is for the entire asyncio.gather() across the list of awaitables--if they get caught in the timeout or return an exception, either of those cases should just place an exception instance in the result list.
Consider this setup:
>>> import asyncio
>>> import random
>>> from time import perf_counter
>>> from typing import Iterable
>>> from pprint import pprint
>>> 
>>> async def coro(i, threshold=0.4):
...     await asyncio.sleep(i)
...     if i > threshold:
...         # For illustration's sake - some coroutines may raise,
...         # and we want to accomodate that and just test for exception
...         # instances in the results of asyncio.gather(return_exceptions=True)
...         raise Exception("i too high")
...     return i
... 
>>> async def main(n, it: Iterable):
...     res = await asyncio.gather(
...         *(coro(i) for i in it),
...         return_exceptions=True
...     )
...     return res
... 
>>> 
>>> random.seed(444)
>>> n = 10
>>> it = [random.random() for _ in range(n)]
>>> start = perf_counter()
>>> res = asyncio.run(main(n, it=it))
>>> elapsed = perf_counter() - start
>>> print(f"Done main({n}) in {elapsed:0.2f} seconds")  # Expectation: ~1 seconds
Done main(10) in 0.86 seconds
>>> pprint(dict(zip(it, res)))
{0.01323751590501987: 0.01323751590501987,
 0.07422124156714727: 0.07422124156714727,
 0.3088946587429545: 0.3088946587429545,
 0.3113884366691503: 0.3113884366691503,
 0.4419557492849159: Exception('i too high'),
 0.4844375347808497: Exception('i too high'),
 0.5796792804615848: Exception('i too high'),
 0.6338658027451068: Exception('i too high'),
 0.7426396870165088: Exception('i too high'),
 0.8614799253779063: Exception('i too high')}
The program above, with n = 10, has an exected runtime of .5 seconds plus a bit of overhead when run asynchronously.  (random.random() will be uniformly distributed in [0, 1).)
Let's say I want to impose that as the timeout, on the entire operation (i.e. on the coroutine main()):
timeout = 0.5
Now, I can use asyncio.wait(), but the problem is that the results are set objects and so definitely can't guarantee the sorted return value property of asyncio.gather():
>>> async def main(n, it, timeout) -> tuple:
...     tasks = [asyncio.create_task(coro(i)) for i in it]
...     done, pending = await asyncio.wait(tasks, timeout=timeout)
...     return done, pending
... 
>>> timeout = 0.5
>>> random.seed(444)
>>> it = [random.random() for _ in range(n)]
>>> start = perf_counter()
>>> done, pending = asyncio.run(main(n, it=it, timeout=timeout))
>>> for i in pending:
...     i.cancel()
>>> elapsed = perf_counter() - start
>>> print(f"Done main({n}) in {elapsed:0.2f} seconds")
Done main(10) in 0.50 seconds
>>> done
{<Task finished coro=<coro() done, defined at <stdin>:1> exception=Exception('i too high')>, <Task finished coro=<coro() done, defined at <stdin>:1> exception=Exception('i too high')>, <Task finished coro=<coro() done, defined at <stdin>:1> result=0.3088946587429545>, <Task finished coro=<coro() done, defined at <stdin>:1> result=0.3113884366691503>, <Task finished coro=<coro() done, defined at <stdin>:1> result=0.01323751590501987>, <Task finished coro=<coro() done, defined at <stdin>:1> result=0.07422124156714727>}
>>> pprint(done)
{<Task finished coro=<coro() done, defined at <stdin>:1> exception=Exception('i too high')>,
 <Task finished coro=<coro() done, defined at <stdin>:1> result=0.3113884366691503>,
 <Task finished coro=<coro() done, defined at <stdin>:1> result=0.07422124156714727>,
 <Task finished coro=<coro() done, defined at <stdin>:1> exception=Exception('i too high')>,
 <Task finished coro=<coro() done, defined at <stdin>:1> result=0.01323751590501987>,
 <Task finished coro=<coro() done, defined at <stdin>:1> result=0.3088946587429545>}
>>> pprint(pending)
{<Task cancelled coro=<coro() done, defined at <stdin>:1>>,
 <Task cancelled coro=<coro() done, defined at <stdin>:1>>,
 <Task cancelled coro=<coro() done, defined at <stdin>:1>>,
 <Task cancelled coro=<coro() done, defined at <stdin>:1>>}
As stated above, the issue is that I seemingly can't map back task instances to the inputs in iterable.  They task ids are effectively lost inside a function scope with tasks = [asyncio.create_task(coro(i)) for i in it].  Is there a Pythonic way/use of asyncio API to mimic the behavior of asyncio.gather() here?
