With your array:
In [236]: arr1 = np.array([[1,2,3],[2,3,4]], dtype=[("x", "f8"),("y", "f8")])
In [237]: arr1
Out[237]:
array([[(1., 1.), (2., 2.), (3., 3.)],
[(2., 2.), (3., 3.), (4., 4.)]], dtype=[('x', '<f8'), ('y', '<f8')])
In [238]: arr1['x']
Out[238]:
array([[1., 2., 3.],
[2., 3., 4.]])
Normally the data for a structured array is provided in the form a list(s) of tuples., same as displayed in Out[237]. Without the tuples np.array assigns the same value to both fields.
You have to do math on each field separately:
In [239]: arr1['y'] *= 10
In [240]: arr1
Out[240]:
array([[(1., 10.), (2., 20.), (3., 30.)],
[(2., 20.), (3., 30.), (4., 40.)]],
dtype=[('x', '<f8'), ('y', '<f8')])
Math operations are defined for simple dtypes like int and float, and uses compiled code where possible.
This error means that the add ufunc has not been defined for this compound dtype. And I think that's true for all compound dtypes.
In [242]: arr1 + arr1
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
<ipython-input-242-345397c600ce> in <module>()
----> 1 arr1 + arr1
TypeError: ufunc 'add' did not contain a loop with signature matching types dtype([('x', '<f8'), ('y', '<f8')]) dtype([('x', '<f8'), ('y', '<f8')]) dtype([('x', '<f8'), ('y', '<f8')])
Since the fields in this case have the same base dtype, we can define another compound dtype that can 'view' it:
In [243]: dt2 = np.dtype([('xy', 'f8', 2)])
In [244]: arr2 = arr1.view(dt2)
In [245]: arr2
Out[245]:
array([[([ 1., 10.],), ([ 2., 20.],), ([ 3., 30.],)],
[([ 2., 20.],), ([ 3., 30.],), ([ 4., 40.],)]],
dtype=[('xy', '<f8', (2,))])
In [246]: arr2['xy']
Out[246]:
array([[[ 1., 10.],
[ 2., 20.],
[ 3., 30.]],
[[ 2., 20.],
[ 3., 30.],
[ 4., 40.]]])
Math on that field will be seen in the original array:
In [247]: arr2['xy'] += .1
In [248]: arr2
Out[248]:
array([[([ 1.1, 10.1],), ([ 2.1, 20.1],), ([ 3.1, 30.1],)],
[([ 2.1, 20.1],), ([ 3.1, 30.1],), ([ 4.1, 40.1],)]],
dtype=[('xy', '<f8', (2,))])
In [249]: arr1
Out[249]:
array([[(1.1, 10.1), (2.1, 20.1), (3.1, 30.1)],
[(2.1, 20.1), (3.1, 30.1), (4.1, 40.1)]],
dtype=[('x', '<f8'), ('y', '<f8')])
We can also view it as a simple dtype, but will have to adjust the shape:
In [250]: arr3 = arr1.view('f8')
In [251]: arr3
Out[251]:
array([[ 1.1, 10.1, 2.1, 20.1, 3.1, 30.1],
[ 2.1, 20.1, 3.1, 30.1, 4.1, 40.1]])
In [252]: arr3.reshape(2,3,2)
Out[252]:
array([[[ 1.1, 10.1],
[ 2.1, 20.1],
[ 3.1, 30.1]],
[[ 2.1, 20.1],
[ 3.1, 30.1],
[ 4.1, 40.1]]])