Here is my code as of now:
d = {}
for stage in ['doggo', 'floofer', 'puppo', 'pupper']:
    #d[stage] =df.groupby([stage]).agg({'retweet_count': 'sum'})
    d[stage] = df.groupby(stage)['retweet_count'].sum()
stage_retweets = pd.DataFrame.from_dict(d)
It produces this:
         doggo      floofer     puppo       pupper
None    1387471.0   1517639.0   1472697.0   1444766.0
doggo   159188.0    NaN         NaN         NaN
floofer NaN         29020.0     NaN         NaN
puppo   NaN         NaN         73962.0     NaN
pupper  NaN         NaN         NaN         101893.0
What I would really like to produce is this:
         doggo      floofer     puppo       pupper
None    1387471.0   1517639.0   1472697.0   1444766.0
stage   159188.0    29020.0     73962.0     101893.0     
Does anyone know how to accomplish this?
 
     
    