The claim is that
∀ quantifier can be turned into ∃ by inverting the constraint
AFAIK, the following two relations hold:
∀x.φ(x) <=> ¬∃x.¬φ(x)
¬∀x.φ(x) <=> ∃x.¬φ(x)
Since a quantifier-free SMT formula φ(x) is equisatisfiable to its existential closure ∃x.φ(x), we can use the quantifier-free fragment of an SMT Theory to express a (simple) negated occurrence of universal quantification, and [AFAIK] also a (simple) positive occurrence of universal quantification over trivial formulas (e.g. if [∃x.]φ(x) is unsat then ∀x.¬φ(x)¹).
¹: assuming φ(x) is quantifier-free; As @Levent Erkok points out in his answer, this approach is inconclusive when both φ(x) and ¬φ(x) are satisfiable
However, we cannot, for example, find a model for the following quantified formula using the quantifier-free fragment of SMT:
[∃y.]((∀x.y <= f(x)) and (∃z.y = f(z)))
For the records, this is an encoding of the OMT problem min(y), y=f(x) as a quantified SMT formula. [related paper]
A term t is quantifier-free iff t syntactically contains no quantifiers. A quantifier-free formula φ is equisatisfiable with its existential closure
(∃x1. (∃x2 . . .(∃xn.φ ). . .))
where x1, x2, . . . , xn is any enumeration of free(φ), the free variables in φ.
The set of free variables of a term t, free(t), is defined inductively as:
free(x) = {x} if x is a variable,
free((f t1 t2 . . . tk)) = \cup_{i∈[1,k]} free(ti) for function applications,
free(∀x.φ) = free(φ) \ {x}, and
free(∃x.φ) = free(φ) \ {x}.
[source]