I see some ways to do this without using a udf.
You could use a list comprehension with pyspark.sql.functions.regexp_extract, exploiting the fact that an empty string is returned if there is no match. 
Try to extract all of the values in the list l and concatenate the results. If the resulting concatenated string is an empty string, that means none of the values matched.
For example:
from pyspark.sql.functions import concat, regexp_extract
records = df.where(concat(*[regexp_extract("score", str(val), 0) for val in l]) != "")
records.show()
#+---+-----+
#| id|score|
#+---+-----+
#|  0|  100|
#|  0|    1|
#|  1|   10|
#|  3|   18|
#|  3|   18|
#|  3|   18|
#+---+-----+
If you take a look at the execution plan, you'll see that it's smart enough cast the score column to string implicitly:
records.explain()
#== Physical Plan ==
#*Filter NOT (concat(regexp_extract(cast(score#11L as string), 1, 0)) = )
#+- Scan ExistingRDD[id#10L,score#11L]
Another way is to use pyspark.sql.Column.like (or similarly with rlike):
from functools import reduce
from pyspark.sql.functions import col
records = df.where(
    reduce(
        lambda a, b: a|b, 
        map(
            lambda val: col("score").like(val.join(["%", "%"])), 
            map(str, l)
        )
    )
)
Which produces the same output as above and has the following execution plan:
#== Physical Plan ==
#*Filter Contains(cast(score#11L as string), 1)
#+- Scan ExistingRDD[id#10L,score#11L]
If you wanted only distinct records, you can do:
records.distinct().show()
#+---+-----+
#| id|score|
#+---+-----+
#|  0|    1|
#|  0|  100|
#|  3|   18|
#|  1|   10|
#+---+-----+