An else only happens if a previous if hasn't happened.
When you say
But if b == 1 and a == 0, Z will do additional changes to those already done by Y
Then you have two options:
## Option 1: nest Z inside Y
if (a == 1){
X
} else if(a == 0){
Y
if (b == 1){
Z
}
}
## Option 2: just use `if` again (not `else if`):
if (a == 1) {
X
} else if(a == 0) {
Y
}
if (a == 0 & b == 1) {
Z
}
Really, you don't need any else here at all.
## This will work just as well
## (assuming that `X` can't change the value of a from 1 to 0
if (a == 1) {
X
}
if (a == 0) {
Y
if (b == 1){
Z
}
}
Typically else is needed when you want to have a "final" action that is done only if none of the previous if options were used, for example:
# try to guess my number between 1 and 10
if (your_guess == 8) {
print("Congratulations, you guessed my number!")
} else if (your_guess == 7 | your_guess = 9) {
print("Close, but not quite")
} else {
print("Wrong. Not even close!")
}
In the above, else is useful because I don't want to have enumerate all the other possible guesses (or even bad inputs) that a user might enter. If they guess 8, they win. If they guess 7 or 9, I tell them they were close. Anything else, no matter what it is, I just say "wrong".
Note: this is true for programming languages in general. It is not unique to R.
However, since this is in the R tag, I should mention that R has if{}else{} and ifelse(), and they are different.
if{} (and optionally else{}) evaluates a single condition, and you can run code to do anything in {} depending on that condition.
ifelse() is a vectorized function, it's arguments are test, yes, no. The test evaluates to a boolean vector of TRUE and FALSE values. The yes and no arguments must be vectors of the same length as test. The result will be a vector of the same length as test, with the corresponding values of yes (when test is TRUE) and no (when test is FALSE).