I want to count the length of time a server is stopped from a dataset. I know the downtime but not the duration.
I have this df:
index                   a          b     c     reboot
2018-06-25 12:51:00    NaN        NaN   NaN     1      
2018-06-25 12:52:00    NaN        NaN   NaN     0    
2018-06-25 12:53:00    NaN        NaN   NaN     0  
2018-06-25 12:54:00    NaN        NaN   NaN     0    
2018-06-25 12:55:00    NaN        NaN   NaN     0    
2018-06-25 12:56:00    NaN        NaN   NaN     0   
2018-06-25 12:57:00    NaN        NaN   NaN     0   
2018-06-25 12:58:00    NaN        0.6   0.6     0
2018-06-25 12:59:00    NaN        NaN   0.5     0  
2018-06-25 13:00:00    NaN        NaN   0.3     0  
2018-06-25 13:01:00   2.55  94.879997  0.23     0
2018-06-25 13:02:00   1.17        Nan  0.13     0
2018-06-25 13:03:00   1.08  98.199997  0.10     0
2018-06-25 13:28:00    NaN        NaN   NaN     1  
2018-06-25 13:29:00    NaN        NaN   NaN     0     
2018-06-25 13:30:00    NaN        NaN   NaN     0
2018-06-25 13:31:00    NaN        NaN   NaN     0
2018-06-25 13:31:00    0.5        0.2   0.1     0
2018-06-25 13:32:00    NaN        NaN   NaN     0 
2018-06-25 13:33:00    NaN        NaN   NaN     0 
2018-06-25 13:34:00     3         0.6   0.5     0 
I want to count the rows where a, b and c are all NaN and reboot == 1, with the result in this form:
index                    period      reboot
2018-06-25 12:51:00         7           1
2018-06-25 13:28:00         4           1
I have already tried doing it column by column without the reboot condition.
Input:
index                   a          b     c     reboot
2018-06-25 12:51:00    NaN        NaN   NaN     1      
2018-06-25 12:52:00    NaN        NaN   NaN     0    
2018-06-25 12:53:00    NaN        NaN   NaN     0  
2018-06-25 12:54:00    NaN        NaN   NaN     0    
2018-06-25 12:55:00    NaN        NaN   NaN     0    
2018-06-25 12:56:00    NaN        NaN   NaN     0   
2018-06-25 12:57:00    NaN        NaN   NaN     0   
2018-06-25 12:58:00    NaN        NaN   NaN     0
2018-06-25 12:59:00    NaN        NaN   NaN     0  
2018-06-25 13:00:00    NaN        NaN   NaN     0  
2018-06-25 13:01:00   2.55  94.879997  0.23     0
2018-06-25 13:02:00   1.17        Nan  0.13     0
2018-06-25 13:03:00   1.08  98.199997  0.10     0
2018-06-25 13:28:00    NaN        NaN   NaN     1  
2018-06-25 13:29:00    NaN        NaN   NaN     0     
2018-06-25 13:30:00    NaN        NaN   NaN     0
a=df.index
b=df.b.values
idx0 = np.flatnonzero(np.r_[True, np.diff(np.isnan(b))!=0,True])
count = np.diff(idx0)
idx = idx0[:-1]
valid_mask = (count>=step) & np.isnan(b[idx])
out_idx = idx[valid_mask]
out_num = a[out_idx]
out_count = count[valid_mask]
outb = zip(out_num, out_count)
periodb=list(outb)
Result :
'[(Timestamp('2018-06-25 12:51:00'), 10),
 (Timestamp('2018-06-25 13:28:00'), 3),'
 
     
    