I create a function which return a score and print a message concern a result . Here the code :
def compute_score(X_cv, clf):
    score = clf.predict_proba(X_cv[84582].reshape(1,-1))[0][1] # Prob of a Win
    df_top10_feat = pd.DataFrame(data={"Feature":df_cv.columns[:-1],
                             "Coefficient":clf.coef_[0],
                             "Value":X_cv[84582],
                             "Importance":list(clf.coef_ * X_cv[84582])[0]}). \
                                    sort_values("Importance",
                                                ascending=False)
    ##extract positif importance
    df_top10_feat_positif= df_top10_feat[df_top10_feat['Importance']>0]
    #extract negatif importance
    df_top10_feat_negatif= df_top10_feat[df_top10_feat['Importance']<0]
    #print
    print("The average of ", df_top10_pos_sort['Feature'].iloc[0], "is",  format(df_cv[df_top10_pos_sort['Feature'].iloc[1]].mean(), '.3f'),". The", df_top10_pos_sort['Feature'].iloc[0], "for this opportunity line is", format(df_top10_pos_sort['Value'].iloc[0], '.3f'), "Therefore, the", df_top10_pos_sort['Feature'].iloc[0],  "is lower than other similar opportunity lines.")
    print("The average of", df_top10_pos_sort['Feature'].iloc[1], "is", format(df_cv[df_top10_pos_sort['Feature'].iloc[1]].mean(), '.3f'),". The ",df_top10_pos_sort['Feature'].iloc[1], "for this opportunity line is", format(df_top10_pos_sort['Value'].iloc[1], '.3f'), "Therefore, the", df_top10_pos_sort['Feature'].iloc[1], " is lower than other similar opportunity lines.")
    print("The average of", df_top10_pos_sort['Feature'].iloc[2], "is", format(df_cv[df_top10_pos_sort['Feature'].iloc[2]].mean(), '.3f'),". The", df_top10_pos_sort['Feature'].iloc[1], "for this opportunity line is", format(df_top10_pos_sort['Value'].iloc[2], '.3f'), "Therefore, the", df_top10_pos_sort['Feature'].iloc[2], "is lower than other similar opportunity lines.")
    print("The average of", df_top10_neg_sort['Feature'].iloc[0], "is", format(df_cv[df_top10_neg_sort['Feature'].iloc[0]].mean(), '.3f'), ". The",df_top10_neg_sort['Feature'].iloc[0], "for this opportunity line is", format(df_top10_neg_sort['Value'].iloc[0], '.3f'), "Therefore,", df_top10_neg_sort['Feature'].iloc[0], "is lower than other similar opportunity lines.")
    print("The average of", df_top10_neg_sort['Feature'].iloc[1], "is", format(df_cv[df_top10_neg_sort['Feature'].iloc[1]].mean(), '.3f'),". The", df_top10_neg_sort['Feature'].iloc[1],  "for this opportunity line is", format(df_top10_neg_sort['Value'].iloc[1], '.3f'), "Therefore,", df_top10_neg_sort['Feature'].iloc[1], "is lower than other similar opportunity lines.")
    print("The average of", df_top10_neg_sort['Feature'].iloc[2],"is", format(df_cv[df_top10_neg_sort['Feature'].iloc[2]].mean(), '.3f'),". The",  df_top10_neg_sort['Feature'].iloc[2], "for this opportunity line is", format(df_top10_neg_sort['Value'].iloc[2], '.3f'), "Therefore,", df_top10_neg_sort['Feature'].iloc[2], "is lower than other similar opportunity lines.")
    return 
My question is should I add an assumption in the "return " bloc? Or I keep it like this?
Thanks
 
     
    