I have a dataframe that looks like this:
df = pd.DataFrame({'VisitorID': [1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000],
                   'EpochTime': [1554888560, 1554888560, 1554888560, 1554888560, 1554888560, 1521333510, 1521333510, 1521333510],
                   'HitTime': [1400, 5340, 7034, 11034, 13059, 990, 4149, 6450],
                   'HitNumber':[23, 54, 55, 65, 110, 14, 29, 54],
                   'PagePath':['orders/details', 'orders/payment', 'orders/afterpayment', 'orders/myorders', 'customercare', 'orders/details', 'orders/payment', 'orders/myorders']})
print(df)
   VisitorID   EpochTime  HitTime  HitNumber             PagePath
0       1000  1554888560     1400         23       orders/details
1       1000  1554888560     5340         54       orders/payment
2       1000  1554888560     7034         55  orders/afterpayment
3       1000  1554888560    11034         65      orders/myorders
4       1000  1554888560    13059        110         customercare
5       1000  1521333510      990         14       orders/details
6       1000  1521333510     4149         29       orders/payment
7       1000  1521333510     6450         54      orders/myorders
In reality my dataframe is +- 10 million rows. And has twice the columns. The data consists of website data which shows the behavior of customers.
What I want to do
To analyze how long the customers are on the website before reaching the first page which is tracked, I want to add one row above each group which copies the values of the top row from columns:
- VisitorID
- EpochTime
But gives new values to columns:
- HitTime = 0
- HitNumber = 0
- PagePath = Home
Info: The combination of VisitorID + EpochTime makes a group unique.
I achieved this with the following code, but it takes +- 5 min to run, I think there should be a faster way:
lst = []
for x, y in df.groupby(['VisitorID', 'EpochTime']):
    lst.append(y.iloc[:1])
df_first = pd.concat(lst, ignore_index=True)
df_first['HitTime'] = 0.0
df_first['HitNumber'] = 0.0
df_first['PagePath'] = 'Home'
print(df_first)
   VisitorID   EpochTime  HitTime  HitNumber PagePath
0       1000  1521333510      0.0        0.0     Home
1       1000  1554888560      0.0        0.0     Home
df_final = pd.concat([df, df_first], ignore_index=True).sort_values(['VisitorID', 'EpochTime', 'HitNumber']).reset_index(drop=True)
print(df_final)
   VisitorID   EpochTime  HitTime  HitNumber             PagePath
0       1000  1521333510      0.0        0.0                 Home
1       1000  1521333510    990.0       14.0       orders/details
2       1000  1521333510   4149.0       29.0       orders/payment
3       1000  1521333510   6450.0       54.0      orders/myorders
4       1000  1554888560      0.0        0.0                 Home
5       1000  1554888560   1400.0       23.0       orders/details
6       1000  1554888560   5340.0       54.0       orders/payment
7       1000  1554888560   7034.0       55.0  orders/afterpayment
8       1000  1554888560  11034.0       65.0      orders/myorders
9       1000  1554888560  13059.0      110.0         customercare
The output of df_final is my expected output.
So the question is, can I do this in a more efficient way?
 
    