from sklearn.feature_extraction.text import CountVectorizer
import flask
import pickle
with open('model/KTcategory-predictor.pkl', 'rb') as f:
    model = pickle.load(f)
with open('model/KTtfidf.pkl', 'rb') as f:
    tfidf = pickle.load(f)
app = flask.Flask(__name__, template_folder='templates')
@app.route('/', methods=['GET', 'POST'])
def main():
    count_vectorizer = CountVectorizer()
    if flask.request.method == 'GET':
        return(flask.render_template('main.html'))
    if flask.request.method == 'POST':
        text = flask.request.form['text'`
        text = text.split(" ")
        input_tc = count_vectorizer.transform(text)
        input_tfidf = tfidf.transform(input_tc)
        predictions = model.predict(input_tfidf)
        return (predictions)
if __name__ == '__main__':
    app.run(debug = True)
            Asked
            
        
        
            Active
            
        
            Viewed 101 times
        
    1
            
            
        
        HansHirse
        
- 18,010
 - 10
 - 38
 - 67
 
        Kanav Talwar
        
- 11
 - 1