I have a pandas dataframe and I would like to add a column level to split specific columns (metric_a, metric_b, metric_c) into several subcolumns based on the value of another column (parameter).
Current data format:
    participant param   metric_a    metric_b    metric_c
0   alice       a       0,700       0,912       0,341
1   alice       b       0,736       0,230       0,370
2   bob         a       0,886       0,364       0,995
3   bob         b       0,510       0,704       0,990
4   charlie     a       0,173       0,462       0,709
5   charlie     b       0,085       0,950       0,807
6   david       a       0,676       0,653       0,189
7   david       b       0,823       0,524       0,430
Wanted data format:
    participant metric_a        metric_b        metric_c
                a       b       a       b       a       b
0   alice       0,700   0,736   0,912   0,230   0,341   0,370
1   bob         0,886   0,510   0,364   0,704   0,995   0,990
2   charlie     0,173   0,085   0,462   0,950   0,709   0,807
3   david       0,676   0,823   0,653   0,524   0,189   0,430
I have tried
df.set_index(['participant', 'param']).unstack(['param'])
which gives me a close result but not satisfies me as I want to keep a single-level index and participant a regular column.
            metric_a        metric_b        metric_c
param       a       b       a       b       a       b
participant
alice       0,700   0,736   0,912   0,230   0,341   0,370
bob         0,886   0,510   0,364   0,704   0,995   0,990
charlie     0,173   0,085   0,462   0,950   0,709   0,807
david       0,676   0,823   0,653   0,524   0,189   0,430
I have the intuition that groupby() or pivot_table() functions could do the job but cannot figure out how.
 
    