If the data frame has 3 columns, I found this StackOverflow answer that gives zero counts: Pandas groupby for zero values
But, HOW to do this for the data frame having only two columns:
Question
NOTE: Answer preferable in Chain operations:
import numpy as np
import pandas as pd
df = pd.DataFrame({'date': pd.date_range('2018-01-01', periods=6),
                   'a': range(6),
                   })
df.iloc[2,0] = df.iloc[1,0]
print(df)
        date  a
0 2018-01-01  0
1 2018-01-02  1
2 2018-01-02  2
3 2018-01-04  3
4 2018-01-05  4
5 2018-01-06  5
To geth the counts of a I do this:
df1 = (df.query("a > 0")
    .groupby(['date'])[['a']]
    .count()
    .add_suffix('_count')
    .reset_index() 
     )
print(df1)
        date  a_count
0 2018-01-02        2
1 2018-01-04        1
2 2018-01-05        1
3 2018-01-06        1
Required Answer from Chain operation
        date  a_count
0 2018-01-01        0  # also include this row
0 2018-01-02        2
1 2018-01-04        1
2 2018-01-05        1
3 2018-01-06        1
My attempt:
df1 = (df.query("a > 0")
    .groupby(['date'])[['a']]
    .count()
    .add_suffix('_count')
    .unstack(fill_value=0)
    .to_frame()
    .stack()
    .reset_index() 
     )
print(df1)
   level_0       date  level_2  0
0  a_count 2018-01-02        0  2
1  a_count 2018-01-04        0  1
2  a_count 2018-01-05        0  1
3  a_count 2018-01-06        0  1
This does not work.
How to fix this ?
Related links:
Pandas groupby for zero values 
 
     
    