library(rpart)
library(imptree)
data(carEvaluation)
table(carEvaluation$acceptance)
> table(carEvaluation$acceptance)
  acc  good unacc vgood 
  384    69  1210    65
Note that unacc is just one of the categories within the acceptance attribute.
So you can do something like this:
{set.seed(3456)
  train <- caret::createDataPartition(carEvaluation$acceptance, p = .8, # partition 80%~20%
                                      list = FALSE)
  carTrain <- carEvaluation[train,]
  carTest  <- carEvaluation[-train,]
  fit <- rpart::rpart(acceptance~., data = carTrain, method = 'class')
}
df <- data.frame(obs = carTest$acceptance,
                 predict(fit, newdata = carTest, type = "class"))
cfm <- caret::confusionMatrix(df$predict.fit..newdata...carTest..type....class.., df$obs)
cfm
> cfm
Confusion Matrix and Statistics
          Reference
Prediction acc good unacc vgood
     acc    70    0    10     2
     good    5   12     1     0
     unacc   1    0   231     0
     vgood   0    1     0    11
Overall Statistics
               Accuracy : 0.9419          
                 95% CI : (0.9116, 0.9641)
    No Information Rate : 0.7035          
    P-Value [Acc > NIR] : < 2.2e-16       
                  Kappa : 0.8762          
 Mcnemar's Test P-Value : NA              
Statistics by Class:
                     Class: acc Class: good Class: unacc Class: vgood
Sensitivity              0.9211     0.92308       0.9545      0.84615
Specificity              0.9552     0.98187       0.9902      0.99698
Pos Pred Value           0.8537     0.66667       0.9957      0.91667
Neg Pred Value           0.9771     0.99693       0.9018      0.99398
Prevalence               0.2209     0.03779       0.7035      0.03779
Detection Rate           0.2035     0.03488       0.6715      0.03198
Detection Prevalence     0.2384     0.05233       0.6744      0.03488
Balanced Accuracy        0.9381     0.95248       0.9724      0.92157
You do not necessarily need to make your code exactly as it is exemplified here. I suggest looking at the documentation of the caret package and the rpart for code enhancement. Or you can provide a fully reproducible example.