In a pandas DataFrame, I have a series of boolean values. In order to filter to rows where the boolean is True, I can use: df[df.column_x]
I thought in order to filter to only rows where the column is False, I could use: df[~df.column_x]. I feel like I have done this before, and have seen it as the accepted answer. 
However, this fails because ~df.column_x converts the values to integers. See below. 
import pandas as pd . # version 0.24.2
a = pd.Series(['a', 'a', 'a', 'a', 'b', 'a', 'b', 'b', 'b', 'b'])
b = pd.Series([True, True, True, True, True, False, False, False, False, False], dtype=bool)
c = pd.DataFrame(data=[a, b]).T
c.columns = ['Classification', 'Boolean']```
print(~c.Boolean)
0    -2
1    -2
2    -2
3    -2
4    -2
5    -1
6    -1
7    -1
8    -1
9    -1
Name: Boolean, dtype: object
print(~b)
0    False
1    False
2    False
3    False
4    False
5     True
6     True
7     True
8     True
9     True
dtype: bool
Basically, I can use c[~b], but not c[~c.Boolean]
Am I just dreaming that this use to work?
 
    