I'm trying to use PyTorch with complex loss function. In order to accelerate the code, I hope that I can use the PyTorch multiprocessing package.
The first trial, I put 10x1 features into the NN and get 10x4 output.
After that, I want to pass 10x4 parameters into a function to do some calculation. (The calculation will be complex in the future.)
After calculating, the function will return a 10x1 array in total. This array will be set as NN_energy and calculate loss function.
Besides, I also want to know if there is another method to create a backward-able array to store the NN_energy array, instead of using
NN_energy = net(Data_in)[0:10,0]
Thanks a lot.
Full Code:
import torch
import numpy as np
from torch.autograd import Variable 
from torch import multiprocessing
def func(msg,BOP):
    ans = (BOP[msg][0]+BOP[msg][1]/BOP[msg][2])*BOP[msg][3]
    return ans
class Net(torch.nn.Module):
    def __init__(self, n_feature, n_hidden_1, n_hidden_2, n_output):
        super(Net, self).__init__()
        self.hidden_1 = torch.nn.Linear(n_feature , n_hidden_1)  # hidden layer
        self.hidden_2 = torch.nn.Linear(n_hidden_1, n_hidden_2)  # hidden layer
        self.predict  = torch.nn.Linear(n_hidden_2, n_output  )  # output layer
    def forward(self, x):
        x = torch.tanh(self.hidden_1(x))      # activation function for hidden layer
        x = torch.tanh(self.hidden_2(x))      # activation function for hidden layer
        x = self.predict(x)                   # linear output
        return x
if __name__ == '__main__': # apply_async
    Data_in      = Variable( torch.from_numpy( np.asarray(list(range( 0,10))).reshape(10,1) ).float() )
    Ground_truth = Variable( torch.from_numpy( np.asarray(list(range(20,30))).reshape(10,1) ).float() )
    net = Net( n_feature=1 , n_hidden_1=15 , n_hidden_2=15 , n_output=4 )     # define the network
    optimizer = torch.optim.Rprop( net.parameters() )
    loss_func = torch.nn.MSELoss()  # this is for regression mean squared loss 
    NN_output = net(Data_in)   
    args = range(0,10)
    pool = multiprocessing.Pool()
    return_data = pool.map( func, zip(args, NN_output) )
    pool.close()
    pool.join()
    NN_energy = net(Data_in)[0:10,0]  
    for i in range(0,10):
        NN_energy[i] = return_data[i]
    loss = torch.sqrt( loss_func( NN_energy , Ground_truth ) )     # must be (1. nn output, 2. target) 
    print(loss)
Error messages:
File "C:\ProgramData\Anaconda3\lib\site-packages\torch\multiprocessing\reductions.py", line 126, in reduce_tensor raise RuntimeError("Cowardly refusing to serialize non-leaf tensor which requires_grad, "
RuntimeError: Cowardly refusing to serialize non-leaf tensor which requires_grad, since autograd does not support crossing process boundaries. If you just want to transfer the data, call detach() on the tensor before serializing (e.g., putting it on the queue).