I am analyzing a dataset and want to quantify the linear regression of total dataset. The dataset has different dependent variables, but with a single independent variable.
I have tried to use the simple linear regression using stat_smooth() from ggplot2 package. This gives the individual regression line for a dataset, but what I want to do is to combine these regression lines into a single regression line that represents both these and maybe an average of more regression lines

    geom_point(aes(x= DateAndTime, y= T_423), na.rm=TRUE, color="purple", shape=19, size=3)+
    geom_point(aes(x= DateAndTime, y= T_422), na.rm=TRUE, color="red", shape=8, size=1)+
    ggtitle("Module Temperature STP423 - Total distribution") +
           xlab("Date") + ylab("Module Temperature (C)")
The data looks something like this:
        Dates            X1            X2
1    2014-01-04      8.0645816      7.2969667
2    2014-01-06      7.7804850      7.1507470
3    2014-01-07      8.8772607      8.6917391
4    2014-01-08      8.8943146      8.3475009
5    2014-01-10      11.6734008     10.6493480
6    2014-01-11      9.0915727      8.5793932
7    2014-01-12      9.5216658      9.4891858
8    2014-01-13     -6.2493962     -6.9360515
 
    
