I'll use my own sample data:
set.seed(2)
y <- data.frame(lon = rnorm(10, mean = -114.4069597, sd = 0.0001),
                lat = rnorm(10, mean = 43.660648, sd = 0.0002) )
I'm guessing your reason for doing the double-loop is so that you don't calculate each distance twice. If you use the base dist function in general, it provides a lower-triangle output, not calculating the upper-triangle. The method below mimics this behavior.
nr <- nrow(y)
out <- sapply(seq_len(nr), function(i) {
  if (i == nr) return(c(rep(NA_real_, i - 1), 0))
  c(rep(NA_real_, i - 1), 0,
    geosphere::distHaversine(y[i,,drop = FALSE],
                             y[(i+1):nr,,drop = FALSE]))
})
out
#         [,1]   [,2]  [,3]  [,4]  [,5]  [,6]  [,7]   [,8]  [,9] [,10]
#  [1,]  0.000     NA    NA    NA    NA    NA    NA     NA    NA    NA
#  [2,] 15.285  0.000    NA    NA    NA    NA    NA     NA    NA    NA
#  [3,] 26.943 32.620  0.00    NA    NA    NA    NA     NA    NA    NA
#  [4,] 32.500 46.234 26.20  0.00    NA    NA    NA     NA    NA    NA
#  [5,] 31.085 17.949 50.25 63.39  0.00    NA    NA     NA    NA    NA
#  [6,] 61.315 73.312 44.29 30.08 91.15  0.00    NA     NA    NA    NA
#  [7,] 16.503  4.798 29.18 45.20 21.10 71.17  0.00     NA    NA    NA
#  [8,] 10.014 21.336 17.54 25.00 38.90 52.34 20.26  0.000    NA    NA
#  [9,] 26.722 14.509 31.46 52.13 23.87 75.49 10.71 28.178  0.00    NA
# [10,]  6.114 12.508 23.04 33.73 30.06 61.12 12.05  8.864 21.43     0
Arbitrary verification:
geosphere::distHaversine(y[8,], y[2,])
# [1] 21.33617
This is faster than your code because it capitalizes on vectorized calculations: geosphere::distHaversine can calculate multiple distances at once:
- between-points (if its second argument is missing);
- between all points in p1with the corresponding points inp2(bothp1andp2have same number of rows); or
- as I'm doing above, a single points against many points.
The c(rep(NA_real_, i - 1), 0, ...) is to ensure the upper-triangle is NA and the diagonal is 0. The first conditional (i==nr) is a cheat to make sure we have a square matrix, and the last column is all-NA and a 0.
If you need the upper-triangle populated as well:
out[upper.tri(out)] <- t(out)[upper.tri(out)]
out
#         [,1]   [,2]  [,3]  [,4]  [,5]  [,6]   [,7]   [,8]  [,9]  [,10]
#  [1,]  0.000 15.285 26.94 32.50 31.08 61.31 16.503 10.014 26.72  6.114
#  [2,] 15.285  0.000 32.62 46.23 17.95 73.31  4.798 21.336 14.51 12.508
#  [3,] 26.943 32.620  0.00 26.20 50.25 44.29 29.178 17.539 31.46 23.037
#  [4,] 32.500 46.234 26.20  0.00 63.39 30.08 45.201 24.996 52.13 33.730
#  [5,] 31.085 17.949 50.25 63.39  0.00 91.15 21.096 38.903 23.87 30.059
#  [6,] 61.315 73.312 44.29 30.08 91.15  0.00 71.166 52.336 75.49 61.116
#  [7,] 16.503  4.798 29.18 45.20 21.10 71.17  0.000 20.257 10.71 12.052
#  [8,] 10.014 21.336 17.54 25.00 38.90 52.34 20.257  0.000 28.18  8.864
#  [9,] 26.722 14.509 31.46 52.13 23.87 75.49 10.706 28.178  0.00 21.435
# [10,]  6.114 12.508 23.04 33.73 30.06 61.12 12.052  8.864 21.43  0.000