I'm having difficulty coming up with a simple merge logic.
 TimeSeries = A.merge(B, on = ['YEAR','MONTH'], how= 'left')
I have the following dataframe. A continuous month/year column from 2001-2018 (12 months X 17 yrs)
A:
|---------------------|------------------|
|       Month         |         Year     |
|---------------------|------------------|
|          12         |         2001     |
|---------------------|------------------|
|          01         |         2002     |
|---------------------|------------------|
|       ......        |        .....     |
|---------------------|------------------|
|          12         |         2018     |
|---------------------|------------------|
And the other data frame which has a unique ID, month, year and $ amount
B:
 |-----------------|----------------|--------------|--------|
 |       Month     |       Year     |       ID     | Amount |
 |-----------------|----------------|--------------|--------|
 |          05     |       2013     |       2      | 500K   |
 |-----------------|----------------|--------------|--------|
 |          01     |       2002     |       1      | 200K   |
 |-----------------|----------------|--------------|--------|
 |          12     |       2016     |       3      | 800K   |
 |-----------------|----------------|--------------|--------|
How would I be able to append/merge both dataframes so each ID from dataframe B has the entire time series from dataframe A. And it should merge on the correct month and year column.
Desired Output for ID. Each ID should have ~204 rows and if the month and year are same, then display the correct $ amount
 |---------------------|------------------|--------------|-----------|
 |       Month         |         Year     |       ID     |   Amount  |
 |---------------------|------------------|--------------|-----------|
 |          01         |         2001     |       1      |    NaN    |
 |---------------------|------------------|--------------|-----------|
 |          01         |         2002     |       1      |    200K   |
 |---------------------|------------------|--------------|-----------|
 |          12         |         2018     |       1      |    NaN    |
 |---------------------|------------------|--------------|-----------|
 
    