I am using the mlr package to predict from an SVM. If my validation set contains factor levels not present in my training data, the prediction fails, regardless of how I set fix.factors.prediction when making the SVM learner.
What is the proper way to handle this? Using e1071::svm() will return a response for new factor levels, but how can I do the same with mlr methods?
Example
library(mlr)
library(dplyr)
set.seed(575)
data(iris)
# Split data
train_set <- sample_frac(iris, 4/5)
valid_set <- setdiff(iris, train_set)
# Remove all "setosa" values from the training set
train_set[train_set$Species == "setosa", "Species"] <- 
  sample(c("virginica", "versicolor"), 
         sum(train_set$Species == "setosa"), replace = TRUE)    
# Fit model
iris_task <- makeRegrTask(data = train_set, target = "Petal.Width")
svm_lrn <- makeLearner("regr.svm", fix.factors.prediction = TRUE)
svm_mod <- train(svm_lrn, iris_task)
# Predict on new factor levels
predict(svm_mod, newdata = valid_set)
Error in (function (..., row.names = NULL, check.rows = FALSE, check.names = TRUE, : arguments imply differing number of rows: 29, 20
When using makeLearner("regr.svm", fix.factors.prediction = FALSE), I get the following error from the call to predict:
Error in scale.default(newdata[, object$scaled, drop = FALSE], center = object$x.scale$"scaled:center", : length of 'center' must equal the number of columns of 'x'
Things that do work
I can generate predictions when subsetting to factor levels in the training set:
predict(svm_mod, newdata = valid_set %>% 
          filter(Species %in% train_set$Species))
No error when using a different learner:
nnet_lrn <- makeLearner("regr.nnet", fix.factors.prediction = TRUE)
nnet_mod <- train(nnet_lrn, iris_task)
predict(nnet_mod, newdata = valid_set)
Or when using the same learner directly from the package:
e1071_mod <- 
  e1071::svm(Petal.Width ~ Sepal.Length + Sepal.Width +
               Petal.Length + Species, train_set)
predict(e1071_mod, newdata = valid_set)
Session info
R version 3.4.4 (2018-03-15)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 14.04.6 LTS
Matrix products: default
BLAS: /usr/lib/libblas/libblas.so.3.0
LAPACK: /usr/lib/lapack/liblapack.so.3.0
locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       
attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     
other attached packages:
[1] dplyr_0.8.0.1     mlr_2.14.0.9000   ParamHelpers_1.12
loaded via a namespace (and not attached):
 [1] parallelMap_1.4    Rcpp_1.0.1         pillar_1.4.1      
 [4] compiler_3.4.4     class_7.3-14       tools_3.4.4       
 [7] tibble_2.1.3       gtable_0.3.0       checkmate_1.9.3   
[10] lattice_0.20-38    pkgconfig_2.0.2    rlang_0.3.99.9003 
[13] Matrix_1.2-14      fastmatch_1.1-0    rstudioapi_0.8    
[16] yaml_2.2.0         parallel_3.4.4     e1071_1.7-1       
[19] nnet_7.3-12        grid_3.4.4         tidyselect_0.2.5  
[22] glue_1.3.1         data.table_1.12.2  R6_2.4.0          
[25] XML_3.98-1.20      survival_2.41-3    ggplot2_3.2.0.9000
[28] purrr_0.3.2        magrittr_1.5       backports_1.1.4   
[31] scales_1.0.0.9000  BBmisc_1.11        splines_3.4.4     
[34] assertthat_0.2.1   colorspace_1.3-2   stringi_1.4.3     
[37] lazyeval_0.2.2     munsell_0.5.0      crayon_1.3.4 
 
    