Here is a dataframe:
    test_num  file_num    dose  is_anneal  test_name  fail
0         10         0    0.00      False    test1       
1         10         1   10.42      False    test1       
2         10         2   34.34      False    test1       
3         10         3   57.06      False    test1       
4         10         4  103.45      False    test1       
5         10         5  200.69      False    test1       
6         10         6  300.24      False    test1     8↑
7         11         0    0.00      False    test2       
8         11         1   10.42      False    test2       
9         11         2   34.34      False    test2       
10        11         3   57.06      False    test2     2↑
11        11         4  103.45      False    test2     2↑
12        11         5  200.69      False    test2     2↑
13        11         6  300.24      False    test2  2↑,8↑
I want to make a pivot table so that both test_num and test_name could present:
fail_data_pivot = fd.pivot(columns='dose', index=['test_num', 'test_name'], values='fail')
>>ValueError: Wrong number of items passed 14, placement implies 2
fail_data_pivot = fd.pivot_table(columns='dose', index=['test_num', 'test_name'], values='fail')
>>pandas.core.base.DataError: No numeric types to aggregate
If I left only test_num  then it works:
fail_data_pivot = fd.pivot(columns='dose', index='test_num', values='fail')
print(fail_data_pivot)
dose     0.00   10.42  34.34  57.06  103.45 200.69 300.24
test_num                                                 
10                                                     8↑
11                                2↑     2↑     2↑  2↑,8↑
This is what I want instead:
dose                   0.00   10.42  34.34  57.06  103.45 200.69 300.24
test_num  test_name                                               
10        test1                                                     8↑
11        test2                                2↑     2↑     2↑  2↑,8↑
How to make a pivot table with multiple index?
 
    