I'm using pandas.read_rsq_query() method to convert my SQL query shown below to a dataframe.
This is the query:
SELECT begin_ts, process_name, avg(count) FROM ecn_stats_2019_06_21 WHERE process_name LIKE 'matching_%_gw' and name = 'raw_msg_count' and begin_ts = '2019-06-21 12:55:00' GROUP BY begin_ts, process_name ORDER BY begin_ts, process_name;
When I run the SQL query in my terminal I get the output below:
begin_ts        |  process_name  |         avg
------------------------+----------------+----------------------
 2019-06-21 12:55:00-04 | matching_01_gw |  252722.250000000000
 2019-06-21 12:55:00-04 | matching_02_gw |  233463.000000000000
 2019-06-21 12:55:00-04 | matching_03_gw |  287673.666666666667
 2019-06-21 12:55:00-04 | matching_04_gw |  201417.000000000000
 2019-06-21 12:55:00-04 | matching_05_gw |  243640.500000000000
 2019-06-21 12:55:00-04 | matching_06_gw |  235529.333333333333
 2019-06-21 12:55:00-04 | matching_07_gw |  203518.666666666667
 2019-06-21 12:55:00-04 | matching_08_gw |  266112.666666666667
 2019-06-21 12:55:00-04 | matching_09_gw | 1066127.000000000000
 2019-06-21 12:55:00-04 | matching_10_gw |  734972.000000000000
 2019-06-21 12:55:00-04 | matching_11_gw |  237903.000000000000
 2019-06-21 12:55:00-04 | matching_12_gw |  238116.000000000000
(12 rows)
But the resulting dataframe looks like this:
                    begin_ts    process_name           avg
0  2019-06-21 16:55:00+00:00  matching_01_gw  2.527222e+05
1  2019-06-21 16:55:00+00:00  matching_02_gw  2.334630e+05
2  2019-06-21 16:55:00+00:00  matching_03_gw  2.876737e+05
3  2019-06-21 16:55:00+00:00  matching_04_gw  2.014170e+05
4  2019-06-21 16:55:00+00:00  matching_05_gw  2.436405e+05
5  2019-06-21 16:55:00+00:00  matching_06_gw  2.355293e+05
6  2019-06-21 16:55:00+00:00  matching_07_gw  2.035187e+05
7  2019-06-21 16:55:00+00:00  matching_08_gw  2.661127e+05
8  2019-06-21 16:55:00+00:00  matching_09_gw  1.066127e+06
9  2019-06-21 16:55:00+00:00  matching_10_gw  7.349720e+05
10 2019-06-21 16:55:00+00:00  matching_11_gw  2.379030e+05
11 2019-06-21 16:55:00+00:00  matching_12_gw  2.381160e+05
When I print the self.endTime variable from the SQL query I get
 self.endTime: 2019-06-21 12:55:00
How can I stop the dataframe from converting my datetime object to UTC? I tried removing the '-04' from the end of the datetime object as reflected above, but no luck.
Edit: Using df['begin_ts'] = df['begin_ts'].dt.tz_convert('US/Eastern') solved my problem
Follow Up Question:
How can I tell the dataframe to not use scientific notation?
