I have a dataframe which looks like this:
pd.DataFrame({'category': [1,1,1,2,2,2,3,3,3,4],
              'order_start': [1,2,3,1,2,3,1,2,3,1],
              'time': [1, 4, 3, 6, 8, 17, 14, 12, 13, 16]})
Out[40]: 
   category  order_start  time
0         1            1     1
1         1            2     4
2         1            3     3
3         2            1     6
4         2            2     8
5         2            3    17
6         3            1    14
7         3            2    12
8         3            3    13
9         4            1    16
I would like to create a new column which contains the mean of the previous times of the same category. How can I create it ?
The new column should look like this:
pd.DataFrame({'category': [1,1,1,2,2,2,3,3,3,4],
              'order_start': [1,2,3,1,2,3,1,2,3,1],
              'time': [1, 4, 3, 6, 8, 17, 14, 12, 13, 16],
              'mean': [np.nan, 1, 2.5, np.nan, 6, 7, np.nan, 14, 13, np.nan]})
Out[41]: 
   category  order_start  time  mean
0         1            1     1   NaN
1         1            2     4   1.0    = 1 / 1
2         1            3     3   2.5    = (4+1)/2
3         2            1     6   NaN
4         2            2     8   6.0    = 6 / 1
5         2            3    17   7.0    = (8+6) / 2
6         3            1    14   NaN
7         3            2    12  14.0
8         3            3    13  13.0
9         4            1    16   NaN
Note: If it is the first time, the mean should be NaN.
EDIT: as stated by cs95, my question was not really the same as this one since here, expanding is required.
 
     
     
    