I have a row in a table that looks like this
    Time                        TenantID  CallingService     PolicyList  PolicyInstanceList 
    2019-11-23 07:30:30.0000000 ########  S1                 p1, p2      pi1,pi2,pi3,pi4
    2019-11-23 07:30:31.0000000 ########  S1                 p1, p2      pi1,pi2,pi3,pi4
    2019-11-23 07:30:32.0000000 ########  S1                 p1, p2      pi1,pi2,pi3,pi4    
    2019-11-23 07:30:33.0000000 ########  S1                 p1, p2      pi1,pi2,pi3,pi4    
    2019-11-23 07:30:34.0000000 ########  S1                 p1, p2      pi1,pi2,pi3,pi4    
    2019-11-23 07:30:35.0000000 ########  S1                 p1, p2      pi1,pi2,pi3,pi4    
    2019-11-23 07:30:36.0000000 ########  S1                 p1, p2      pi1,pi2,pi3,pi4    
    2019-11-23 07:30:37.0000000 ########  S1                 p1, p2      pi1,pi2,pi3,pi4
    2019-11-23 07:30:38.0000000 ########  S1                 p1, p2      pi1,pi2,pi3,pi4           
I have aggregated it based on the TenantID so that it looks like this
Time                        TADCount    TenantID
2019-11-23 00:00:00.0000    8           ########
However, I need to add more granularity to my aggregation so I can do it based on multiple keys. For example,
Time                        TADCount    TenantID  CallingService  PolicyList  PolicyInstanceList 
2019-11-23 00:00:00.0000    1           ########  S1              p2          pi3
Here is the aggregation statement I have been using for reference to achieve the 2nd code block.
  SELECT DATEADD(DAY, DATEDIFF(DAY, 0, [Time]), 0) AS Time
      ,Count([TenantId]) AS TADCount, [TenantId]
      --,Count([PolicyList]) AS PolicyListCount, [PolicyList]
  FROM [dbo].[acms_data] 
  GROUP by DATEADD(DAY, DATEDIFF(DAY, 0, [Time]), 0),[TenantId] 
 
    