Related to this question, I've been trying to use melt but without success..
I've got a DataFrame with 1 row, like this:
   A   B   C   total   date   A_size   B_size   C_size   total_size
0  4   2   5    11 2019-01-01  123      456      789        1368
Which I'd like to turn into this (at this point I don't care about date anymore):
      Values     Sizes
A        4        123
B        2        456
C        5        789
total    11       1368
I've got something terribly hacky that does the job, but it's not flexible. I'd like to be able to add D and D_size without having to modify the downstream code.
Hacky code:
def format_table(todays_metadata: pd.DataFrame):
    todays_metadata_reformat = todays_metadata.loc[:, 'A':'total'] # hardcoded 'A'
    todays_metadata_reformat.index = ['Values']
    sizes = todays_metadata.loc[:, 'A_size':'total_size'] # hardcoded 'A_size'
    sizes.index = ['Sizes']
    sizes.columns = todays_metadata_reformat.columns
    todays_metadata_reformat = 
    todays_metadata_reformat.append(sizes).transpose()
    return todays_metadata_reformat
 
     
    