I have a dataset with multiple entries for the same year, metric, and country. I want to create a dataframe where rows with matching values for year, metric, and country are summed into a single row.
There are potentially hundreds of instances of matching values across the first three columns so the solution must scale well.
Initial data:
Year    Metric  Country         Q1      Q2      Q3      Q4
2016    2.1.1   Australia   23  166 146 17
2016    2.1.1   Australia   0   24  26  0
2014    3.1.1   Haiti           0   0   0   0
2015    2.1.1   Mexico          442 37  16  58
2013    3.1.4   Jamaica             
2015    2.1.1   Mexico          165 140 209 309
I have tried several iterations of groupby and boolean indexing from here:
How do I sum values in a column that match a given condition using pandas?
Desired output:
Year    Metric  Country         Q1      Q2      Q3      Q4
2016    2.1.1   Australia   23  190 172 17
2014    3.1.1   Haiti           0   0   0   0
2015    2.1.1   Mexico          606 177 225 367
2013    3.1.4   Jamaica             
