I am working with a spatial dataset where the response is binary 0 or 1. I want to estimate the beta coefficients and account for the spatial autocorrelation, so am trying to fit a binomial regression model using the CARBayes package S.CARleroux with family="binomial". However, sometimes when I do this it works and the result is a distribution for the coefficients, but with other datasets (formatted the same way) the trace plots remain flat and there the effective sample number n.effective is 0.
For example, in this case, it appears that the sampling was working, and then essentially failed:

Other times, again with very similar datasets, the result is 
The code I'm using is: car.prox <- S.CARleroux(formula=f, data = df, W=W, family="binomial",burnin=burn.in, n.sample=n.sample,thin=20, trials=rep(1,nrow(df)), rho = 1, verbose=TRUE)
The output, in the second case, is
#################
#### Model fitted
#################
Likelihood model - Binomial (logit link function) 
Random effects model - Leroux CAR
Regression equation - y ~ var2 + var3 + var4 + var5 + var6 + 
    var7 + var8 + var9 + var10
Number of missing observations - 0
############
#### Results
############
Posterior quantities and DIC
                Median       2.5%      97.5% n.sample % accept n.effective
(Intercept)   -12.2061   -12.2061   -12.2061    10000      0.8         0.0
var2           -1.7098    -1.7098    -1.7098    10000      0.8         0.0
var3            6.2169     6.2169     6.2169    10000      0.8         0.0
var4           21.3834    21.3834    21.3834    10000      0.8         0.0
var5           -8.3727    -8.3727    -8.3727    10000      0.8         0.0
var6            7.8046     7.8046     7.8046    10000      0.8         0.0
var7            2.3668     2.3668     2.3668    10000      0.8         0.0
var8           -8.7651    -8.7651    -8.7651    10000      0.8         0.0
var9           -1.0197    -1.0197    -1.0197    10000      0.8         0.0
var10          -3.6726    -3.6726    -3.6726    10000      0.8         0.0
tau2        11022.7758 10122.9703 12068.6439    10000    100.0      4420.2
rho             1.0000     1.0000     1.0000       NA       NA          NA
            Geweke.diag
(Intercept)         NaN
var2                NaN
var3                NaN
var4                NaN
var5                NaN
var6                NaN
var7                NaN
var8                NaN
var9                NaN
var10               NaN
tau2               -2.3
rho                  NA
DIC =  NaN       p.d =  NaN       LMPL =  -2871.75
How can I fix this and get the distribution for the coefficients in a way that accounts for the spatial autocorrelation?
Reproducible example:
# libraries
library(CARBayes)
library(Matrix)
# data as txt can be copied from https://gist.github.com/tommlogan/584f235f60bb05b5ae57e0d7e44b7aee
# there are dput options and .txt options
df <- read.table('atl_data.txt')
W <- readMM(file='atl_neighbors.txt')
W <- as(W, 'matrix')*1
# parameters
burn.in  <- 50000 #100000
n.sample <- 150000 # 300000
thin.n   <- 20
explan_vars = c('black','asian','amindian','hispanic','youth','aged','poverty','density','female')
# Now we fit the model to three different response variables in the same dataset and see the output changes
# this first one at least samples randomly (the trace plots are suitable)
f <- as.formula(paste("class_prox~", paste(explan_vars, collapse=" + ")))
car.lm <- S.CARleroux(formula=f, data = df, W=W, family="binomial",burnin=burn.in, n.sample=n.sample,thin=thin.n, trials=rep(1,nrow(df)), rho = 1, verbose=TRUE)
print(car.lm)
plot(car.lm$samples$beta)
# in this example the trace plots initially indicate variation in the samples, but then it flatlines at a constant value
f <- as.formula(paste("class_crime~", paste(explan_vars, collapse=" + ")))
car.lm <- S.CARleroux(formula=f, data = df, W=W, family="binomial",burnin=burn.in, n.sample=n.sample,thin=thin.n, trials=rep(1,nrow(df)), rho = 1, verbose=TRUE)
print(car.lm)
plot(car.lm$samples$beta)
# in this example the trace plots are a constant value the entire time
f <- as.formula(paste("class_cong~", paste(explan_vars, collapse=" + ")))
car.lm <- S.CARleroux(formula=f, data = df, W=W, family="binomial",burnin=burn.in, n.sample=n.sample,thin=thin.n, trials=rep(1,nrow(df)), rho = 1, verbose=TRUE)
print(car.lm)
plot(car.lm$samples$beta)
