I'm trying to write a python script that concats two csv files and then drops the duplicate rows. Here is an example of the csv's I'm concating:
csv_1
type    state    city    date        estimate    id
lux     tx       dal     2019/08/15  .8273452    10
sed     ny       ny      2019/05/12  .624356     10
cou     cal      la      2013/04/24  .723495     10
.       .        .       .           .           .
.       .        .       .           .           .
csv_2
type    state    city    date        estimate    id
sed     col      den     2013/05/02  .7234957    232
sed     mi       det     2015/11/17  .4249357    232
lux     nj       al      2009/02/29  .627234     232
.       .        .       .           .           .
.       .        .       .           .           .
As of now, my code to concat these two together looks like this:
csv_1 = pd.read_csv('csv_1.csv')
csv_2 = pd.read_csv('csv_2.csv')
union_df = pd.concat([csv_1, csv_2])
union_df.drop_duplicates(subset=['type', 'state', 'city', 'date'], inplace=True, keep='first')
Is there any way I can ensure only rows with id = 232 are deleted and none with id = 10 are? Just a way to specify only rows from the second csv are removed from the concatenated csv?
Thank you
 
     
    