Here is a data.table way of doing this, in case the data is big and speed is an issue. For more information, refer to the help page of ?data.table:
When i is a data.table, x (that is the outer data.table) must have a
  key. i (that is the inner data.table) is joined to x using the key and
  the rows in x that match are returned.    An equi-join is performed
  between each column in i to each column in x's key. The match is a
  binary search in compiled C in O(log n) time.    If i has less columns
  than x's key then many rows of x may match to each row of i. If i has
  more columns than x's key, the columns of i not    involved in the
  join are included in the result. If i also has a key, it is i's key
  columns that are used to match to x's key columns and a binary merge
  of the two tables is carried out.
Note that I adjusted the sample data provided by Chase a little to make certain points about the matching in data.table more obvious:
require(data.table)
#Version 1.7.7
set.seed(1)
table1 <- data.table(id = sample(3:7, 5, FALSE), var1 = rnorm(5), key="id")
table2 <- data.table(id = 5:10, var2 = rnorm(6), key="id")
#Default: If id in table 1 is not in table 2, return NA
table2[table1]
#      id         var2       var1
# [1,]  3           NA -0.2947204
# [2,]  4           NA  1.2724293
# [3,]  5 -0.005767173 -0.9285670
# [4,]  6  2.404653389 -1.5399500
# [5,]  7  0.763593461  0.4146414
#If one wants to get rid of the NAs
table2[table1, nomatch=0]
#      id         var2       var1
# [1,]  5 -0.005767173 -0.9285670
# [2,]  6  2.404653389 -1.5399500
# [3,]  7  0.763593461  0.4146414
#Or the other way around: get all ids of table 2
table1[table2]
#      id       var1         var2
# [1,]  5 -0.9285670 -0.005767173
# [2,]  6 -1.5399500  2.404653389
# [3,]  7  0.4146414  0.763593461
# [4,]  8         NA -0.799009249
# [5,]  9         NA -1.147657009
# [6,] 10         NA -0.289461574
The obligatory speed test:
set.seed(10)
df1 <- data.frame(id = sample(1:5e6, 5e6, FALSE))
df2 <- data.frame(id = sample(1:5e6, 5e6, FALSE), var = rnorm(5e6))
system.time(df_solution <- merge(df1, df2, sort = TRUE))
#    user  system elapsed 
#   33.10    0.32   33.54
merge_dt <- function(df1, df2) {
  dt1 <- setkey(as.data.table(df1), "id")
  dt2 <- setkey(as.data.table(df2), "id")
  return(dt1[dt2])
}
system.time(dt_solution <- merge_dt(df1, df2))
#    user  system elapsed 
#   12.94    0.01   12.95 
all.equal(df_solution, as.data.frame(dt_solution))
#[1] TRUE
And my usual disclaimer: I'm still learning a lot about this package as well, so you find better information at the package homepage.