The above topic made me do some experiments with bool and int in if condition. So just out of curiosity I wrote this program:
int f(int i)
{
if ( i ) return 99; //if(int)
else return -99;
}
int g(bool b)
{
if ( b ) return 99; //if(bool)
else return -99;
}
int main(){}
g++ intbool.cpp -S generates asm code for each functions as follows:
asm code for
f(int)__Z1fi: LFB0: pushl %ebp LCFI0: movl %esp, %ebp LCFI1: cmpl $0, 8(%ebp) je L2 movl $99, %eax jmp L3 L2: movl $-99, %eax L3: leave LCFI2: retasm code for
g(bool)__Z1gb: LFB1: pushl %ebp LCFI3: movl %esp, %ebp LCFI4: subl $4, %esp LCFI5: movl 8(%ebp), %eax movb %al, -4(%ebp) cmpb $0, -4(%ebp) je L5 movl $99, %eax jmp L6 L5: movl $-99, %eax L6: leave LCFI6: ret
Surprisingly, g(bool) generates more asm instructions! Does it mean that if(bool) is little slower than if(int)? I used to think bool is especially designed to be used in conditional statement such as if, so I was expecting g(bool) to generate less asm instructions, thereby making g(bool) more efficient and fast.
EDIT:
I'm not using any optimization flag as of now. But even absence of it, why does it generate more asm for g(bool) is a question for which I'm looking for a reasonable answer. I should also tell you that -O2 optimization flag generates exactly same asm. But that isn't the question. The question is what I've asked.