I am working on a dataset which has a feature that has multiple categories for a single example. The feature looks like this:-
                              Feature
0   [Category1, Category2, Category2, Category4, Category5]
1                     [Category11, Category20, Category133]
2                                    [Category2, Category9]
3                [Category1000, Category1200, Category2000]
4                                              [Category12]
The problem is similar to the this question posted:- Encode categorical features with multiple categories per example - sklearn
Now, I want to vectorize this feature. One solution is to use MultiLabelBinarizer as suggested in the answer of the above similar question. But, there are around 2000 categories, which results into a sparse and very high dimentional encoded data.
Is there any other encoding that can be used? Or any possible solution for this problem. Thanks.