This question is different from the other ones because in none of them the column name resides in the value of a key... Please look at the examples given before marking as duplicate.
I have a df like so:
df: col1 col2 col3
    100  200  [{'attribute': 'Pattern', 'value': 'Printed'},...
Closer look at column 3 looks like:
[{'attribute': 'Pattern', 'value': 'Printed'},
 {'attribute': 'Topwear style', 'value': 'T shirt'},
 {'attribute': 'Bottomwear Length', 'value': 'Short'},
 {'attribute': 'Colour Palette', 'value': 'Bright colours'},
 {'attribute': 'Bottomwear style', 'value': 'Baggy'},
 {'attribute': 'Topwear length', 'value': 'Waist'},
 {'attribute': 'Sleeve style', 'value': 'Sleeveless'},
 {'attribute': 'Type of pattern', 'value': 'Graphic print'},
 {'attribute': 'Neck', 'value': 'Round'},
 {'attribute': 'Level of embellishment', 'value': 'No'}]
Where each attribute is column name and each value, is the value for that column name.
The output will look something like this:
df: col1   col2    Pattern       Topwear Style       Bottomwear Length ....
    100    200     Printed       T shirt             Shorts
There are multiple rows with repeating and new attributes and values. How would I go about doing this in pandas? I tried searching for something similar but couldn't find anything useful.
 
     
    
 
    