This question shows how to count NAs in a dataframe for a particular column C. How do I count NAs for all columns (that aren't the groupby column)?
Here is some test code that doesn't work:
#!/usr/bin/env python3
import pandas as pd
import numpy as np
df = pd.DataFrame({'a':[1,1,2,2], 
                   'b':[1,np.nan,2,np.nan],
                   'c':[1,np.nan,2,3]})
# result = df.groupby('a').isna().sum()
# AttributeError: Cannot access callable attribute 'isna' of 'DataFrameGroupBy' objects, try using the 'apply' method
# result = df.groupby('a').transform('isna').sum()
# AttributeError: Cannot access callable attribute 'isna' of 'DataFrameGroupBy' objects, try using the 'apply' method
result = df.isna().groupby('a').sum()
print(result)
# result:
#          b    c
# a
# False  2.0  1.0
result = df.groupby('a').apply(lambda _df: df.isna().sum())
print(result)
# result:
#    a  b  c
# a
# 1  0  2  1
# 2  0  2  1
Desired output:
     b    c
a
1    1    1
2    1    0