I have read that == has trouble with floating points. eg:
good
74.2+53.2
[1] 127.4
74.2+53.2==127.4
[1] TRUE
bad
74.2+153.2
[1] 227.4
74.2+153.2==227.4
[1] FALSE
isTRUE and all.equal
isTRUE(all.equal(74.2+153.2, 227.4))
[1] TRUE
Using dplyr to group_by a variable, then summarise one variable as sum and the max of another, then look for equivalency. 
First a working example: 74.2+53.2=127.4
library(dplyr)
df<-tibble(group=c(  1,     2,     2,   3),
           B=    c(1.0,  74.2,  53.2, 1.0),
           C=    c(  2, 127.4, 127.4, 1.0))
df %>% 
  group_by(group) %>% 
  summarise(sumB = sum(B),
            maxC = max(C)) %>% 
  mutate(equal = case_when(sumB== maxC ~ "yes"))
group sumB maxC equal <dbl> <dbl> <dbl> <chr> 1 1 1 2 NA 2 2 127. 127. yes 3 3 1 1 yes
Now slightly larger numbers: 74.2+153.2=227.4
df<-tibble(group=c(1,2,2,3),
           B=c(1.0,74.2,153.2,1.0),
           C=c(2,227.4,227.4,1.0))
df %>% 
  group_by(group) %>% 
  summarise(sumB = sum(B),
            maxC = max(C)) %>% 
  mutate(equal = case_when(sumB== maxC ~ "yes"))
# A tibble: 3 x 4 group sumB maxC equal <dbl> <dbl> <dbl> <chr> 1 1 1 2 NA 2 2 227. 227. NA 3 3 1 1 yes
Direct math
74.2+153.2==227.4
[1] FALSE
Now wrapped in isTRUE() and all.equal()
isTRUE(all.equal(74.2+153.2, 227.4))
[1] TRUE
Now a modified case_when()
df %>% 
  group_by(group) %>% 
  summarise(sumB = sum(B),
            maxC = max(C)) %>% 
  mutate(equal = case_when(isTRUE(all.equal(sumB, maxC)) ~ "yes"))
# A tibble: 3 x 4 group sumB maxC equal <dbl> <dbl> <dbl> <chr> 1 1 1 2 NA 2 2 227. 227. NA 3 3 1 1 NA
No, this is not the expected result. What is the correct way to solve this?
 
    