First you need to create a MultiDiGraph and add all possible edges to it. This is because it supports multiple directed egdes between the same set of nodes including self-loops.
import networkx as nx
nodes = [0, 1, 2, 3, 4, 5]
edges = [(0,1), (1,0), (1, 0),(0, 1), (2, 3), (2, 3), (2, 3), (2, 3),
         (4, 1), (4, 1), (4, 1), (4, 1), (4, 1), (4, 1), (4, 5), (5, 0)]
G = nx.MultiDiGraph()
G.add_nodes_from(nodes)
G.add_edges_from(edges)
Next, create a dictionary containing counts of each edges
from collections import Counter
width_dict = Counter(G.edges())
edge_width = [ (u, v, {'width': value}) 
              for ((u, v), value) in width_dict.items()]
Now create a new DiGraph from the edge_width dictionary created above
G_new = nx.DiGraph()
G_new.add_edges_from(edge_width)
Plotting using thickened edges 
This is an extension of answer mentioned here.
edges = G_new.edges()
weights = [G_new[u][v]['width'] for u,v in edges] 
nx.draw(G_new, edges=edges, width=weights)

Add Edge labels 
See this answer for more info.
pos = nx.spring_layout(G_new)
nx.draw(G_new, pos)
edge_labels=dict([((u,v,),d['width'])
             for u,v,d in G_new.edges(data=True)])
nx.draw_networkx_edges(G_new, pos=pos)
nx.draw_networkx_edge_labels(G_new, pos, edge_labels=edge_labels,
                             label_pos=0.25, font_size=10)

You can also view this Google Colab Notebook with working code.
References