There is a little bit of a misconception in your question. In functional languages, if is not necessarily a function of three parameters. Rather, it is sometimes two functions of two parameters.
In particular, that is how the Church Encoding of Booleans works in λ-calculus: there are two functions, let's call them True and False. Both functions have two parameters. True simply returns the first argument, False simply returns the second argument.
First, let's define two functions called true and false. We could define them any way we want, they are completely arbitrary, but we will define them in a very special way which has some advantages as we will see later (I will use ECMAScript as a somewhat reasonable approximation of λ-calculus that is probably readable by a bigger portion of visitors to this site than λ-calculus itself):
const tru = (thn, _ ) => thn,
fls = (_ , els) => els;
tru is a function with two parameters which simply ignores its second argument and returns the first. fls is also a function with two parameters which simply ignores its first argument and returns the second.
Why did we encode tru and fls this way? Well, this way, the two functions not only represent the two concepts of true and false, no, at the same time, they also represent the concept of "choice", in other words, they are also an if/then/else expression! We evaluate the if condition and pass it the then block and the else block as arguments. If the condition evaluates to tru, it will return the then block, if it evaluates to fls, it will return the else block. Here's an example:
tru(23, 42);
// => 23
This returns 23, and this:
fls(23, 42);
// => 42
returns 42, just as you would expect.
There is a wrinkle, however:
tru(console.log("then branch"), console.log("else branch"));
// then branch
// else branch
This prints both then branch and else branch! Why?
Well, it returns the return value of the first argument, but it evaluates both arguments, since ECMAScript is strict and always evaluates all arguments to a function before calling the function. IOW: it evaluates the first argument which is console.log("then branch"), which simply returns undefined and has the side-effect of printing then branch to the console, and it evaluates the second argument, which also returns undefined and prints to the console as a side-effect. Then, it returns the first undefined.
In λ-calculus, where this encoding was invented, that's not a problem: λ-calculus is pure, which means it doesn't have any side-effects; therefore you would never notice that the second argument also gets evaluated. Plus, λ-calculus is lazy (or at least, it is often evaluated under normal order), meaning, it doesn't actually evaluate arguments which aren't needed. So, IOW: in λ-calculus the second argument would never be evaluated, and if it were, we wouldn't notice.
ECMAScript, however, is strict, i.e. it always evaluates all arguments. Well, actually, not always: the if/then/else, for example, only evaluates the then branch if the condition is true and only evaluates the else branch if the condition is false. And we want to replicate this behavior with our iff. Thankfully, even though ECMAScript isn't lazy, it has a way to delay the evaluation of a piece of code, the same way almost every other language does: wrap it in a function, and if you never call that function, the code will never get executed.
So, we wrap both blocks in a function, and at the end call the function that is returned:
tru(() => console.log("then branch"), () => console.log("else branch"))();
// then branch
prints then branch and
fls(() => console.log("then branch"), () => console.log("else branch"))();
// else branch
prints else branch.
We could implement the traditional if/then/else this way:
const iff = (cnd, thn, els) => cnd(thn, els);
iff(tru, 23, 42);
// => 23
iff(fls, 23, 42);
// => 42
Again, we need some extra function wrapping when calling the iff function and the extra function call parentheses in the definition of iff, for the same reason as above:
const iff = (cnd, thn, els) => cnd(thn, els)();
iff(tru, () => console.log("then branch"), () => console.log("else branch"));
// then branch
iff(fls, () => console.log("then branch"), () => console.log("else branch"));
// else branch
Now that we have those two definitions, we can implement or. First, we look at the truth table for or: if the first operand is truthy, then the result of the expression is the same as the first operand. Otherwise, the result of the expression is the result of the second operand. In short: if the first operand is true, we return the first operand, otherwise we return the second operand:
const orr = (a, b) => iff(a, () => a, () => b);
Let's check out that it works:
orr(tru,tru);
// => tru(thn, _) {}
orr(tru,fls);
// => tru(thn, _) {}
orr(fls,tru);
// => tru(thn, _) {}
orr(fls,fls);
// => fls(_, els) {}
Great! However, that definition looks a little ugly. Remember, tru and fls already act like a conditional all by themselves, so really there is no need for iff, and thus all of that function wrapping at all:
const orr = (a, b) => a(a, b);
There you have it: or (plus other boolean operators) defined with nothing but function definitions and function calls in just a handful of lines:
const tru = (thn, _ ) => thn,
fls = (_ , els) => els,
orr = (a , b ) => a(a, b),
nnd = (a , b ) => a(b, a),
ntt = a => a(fls, tru),
xor = (a , b ) => a(ntt(b), b),
iff = (cnd, thn, els) => cnd(thn, els)();
Unfortunately, this implementation is rather useless: there are no functions or operators in ECMAScript which return tru or fls, they all return true or false, so we can't use them with our functions. But there's still a lot we can do. For example, this is an implementation of a singly-linked list:
const cons = (hd, tl) => which => which(hd, tl),
car = l => l(tru),
cdr = l => l(fls);
You may have noticed something peculiar: tru and fls play a double role, they act both as the data values true and false, but at the same time, they also act as a conditional expression. They are data and behavior, bundled up into one … uhm … "thing" … or (dare I say) object! Does this idea of identifying data and behavior remind us of anything?
Indeed, tru and fls are objects. And, if you have ever used Smalltalk, Self, Newspeak or other pure object-oriented languages, you will have noticed that they implement booleans in exactly the same way: two objects true and false which have method named if that takes two blocks (functions, lambdas, whatever) as arguments and evaluates one of them.
Here's an example of what it might look like in Scala:
sealed abstract trait Buul {
def apply[T, U <: T, V <: T](thn: ⇒ U)(els: ⇒ V): T
def &&&(other: ⇒ Buul): Buul
def |||(other: ⇒ Buul): Buul
def ntt: Buul
}
case object Tru extends Buul {
override def apply[T, U <: T, V <: T](thn: ⇒ U)(els: ⇒ V): U = thn
override def &&&(other: ⇒ Buul) = other
override def |||(other: ⇒ Buul): this.type = this
override def ntt = Fls
}
case object Fls extends Buul {
override def apply[T, U <: T, V <: T](thn: ⇒ U)(els: ⇒ V): V = els
override def &&&(other: ⇒ Buul): this.type = this
override def |||(other: ⇒ Buul) = other
override def ntt = Tru
}
object BuulExtension {
import scala.language.implicitConversions
implicit def boolean2Buul(b: ⇒ Boolean) = if (b) Tru else Fls
}
import BuulExtension._
(2 < 3) { println("2 is less than 3") } { println("2 is greater than 3") }
// 2 is less than 3
Given the very close relationship between OO and actors (they are pretty much the same thing, actually), which is not historically surprising (Alan Kay based Smalltalk on Carl Hewitt's PLANNER; Carl Hewitt based Actors on Alan Kay's Smalltalk), I wouldn't be surprised if this turned out to be a step in the right direction to solve your problem.