After review of similar questions on SO, I have been unable to find a solution to DataFrame formatting with a nested dictionary to a desired outcome.
Being new to Pandas and moderately new to Python, I have spent the better part of two days trying and failing at various potential solutions (json_normalize, dictionary flattening, pd.concat, etc..).
I have a method which creates a DataFrame from a API call:
def make_dataframes(self):
    # removed non-related code    
    self._data_frame_counts = pd.DataFrame({
            'Created': (self._data_frame_30days.count()['Created']),
            'Closed': (self._data_frame_30days.count()['Closed']),
            'Owner':
            (self._data_frame_30days['Owner'].value_counts().to_dict()),
            'Resolution':
            (self._data_frame_30days['Resolution'].value_counts().to_dict()),
            'Severity':
            (self._data_frame_30days['Severity'].value_counts().to_dict())
        })
that writes a nested dictionary from Pandas value_count/s:
{'Created': 35,
 'Closed': 6,
 'Owner': {'aName': 30, 'first.last': 3, 'last.first': 2},
 'Resolution': {'TruePositive': 5, 'FalsePositive': 1},
 'Severity': {2: 31, 3: 4}}
Which after execution looks like:
                  Created Closed  Owner  Resolution  Severity
aName             35       6     30.0         NaN       NaN
first.last        35       6      3.0         NaN       NaN
last.first        35       6      2.0         NaN       NaN
TruePositive      35       6      NaN         5.0       NaN
FalsePositive     35       6      NaN         1.0       NaN
2                 35       6      NaN         NaN      31.0
3                 35       6      NaN         NaN       4.0
I want it to look like the following. Where data is accurately aligned with axis and accounts for missing data-points not present in the dictionary but could be there in future runs.
                Created Closed  Owner   Resolution  Severity
total           35      6       NaN     NaN         NaN
aName           NaN     NaN     30      NaN         NaN
first.last      NaN     NaN     3       NaN         NaN
last.first      NaN     NaN     2       NaN         NaN
anotherName     NaN     NaN     NaN     NaN         NaN
1               NaN     NaN     NaN     NaN         0
2               NaN     NaN     NaN     NaN         31
3               NaN     NaN     NaN     NaN         4
second.Name     NaN     NaN     NaN     NaN         NaN
third.name      NaN     NaN     NaN     NaN         NaN
TruePositive    NaN     NaN     NaN     5           NaN
FalsePositive   NaN     NaN     NaN     1           NaN