I am using R for analysis and would like to perform a permutation test. For this I am using a for loop that is quite slow and I would like to make the code as fast as possible. I think that vectorization is key for this. However, after several days of trying I still haven't found a suitable solution how to re-code this. I would deeply appreciate your help!
I have a symmetrical matrix with pairwise ecological distances between populations ("dist.mat"). I want to randomly shuffle the rows and columns of this distance matrix to generate a permuted distance matrix ("dist.mat.mix"). Then, I would like to save the upper triangular values in this permuted distance matrix (of the size of "nr.pairs"). This process should be repeated several times ("nr.runs"). The result should be a matrix ("result") containing the permuted upper triangular values of the several runs, with the dimensions of nrow=nr.runs and ncol=nr.pairs. Below an example R code that is doing what I want using a for loop:
# example number of populations
nr.pops <- 20
# example distance matrix
dist.mat <- as.matrix(dist(matrix(rnorm(20), nr.pops, 5)))
# example number of runs
nr.runs <- 1000
# find number of unique pairwise distances in distance matrix
nr.pairs <- nr.pops*(nr.pops-1) / 2
# start loop
result <- matrix(NA, nr.runs, nr.pairs)
for (i in 1:nr.runs) {
mix <- sample(nr.pops, replace=FALSE)
dist.mat.mix <- dist.mat[mix, mix]
result[i, ] <- dist.mat.mix[upper.tri(dist.mat.mix, diag=FALSE)]
}
# inspect result
result
I already made some clumsy vectorization attempts with the base::replicate function, but this doesn't speed things up. Actually it's a bit slower:
# my for loop approach
my.for.loop <- function() {
result <- matrix(NA, nr.runs, nr.pairs)
for (i in 1:nr.runs){
mix <- sample(nr.pops, replace=FALSE)
dist.mat.mix <- dist.mat[mix ,mix]
result[i, ] <- dist.mat.mix[upper.tri(dist.mat.mix, diag=FALSE)]
}
}
# my replicate approach
my.replicate <- function() {
results <- t(replicate(nr.runs, {
mix <- sample(nr.pops, replace=FALSE)
dist.mat.mix <- dist.mat[mix, mix]
dist.mat.mix[upper.tri(dist.mat.mix, diag=FALSE)]
}))
}
# compare speed
require(microbenchmark)
microbenchmark(my.for.loop(), my.replicate(), times=100L)
# Unit: milliseconds
# expr min lq mean median uq max neval
# my.for.loop() 23.1792 24.4759 27.1274 25.5134 29.0666 61.5616 100
# my.replicate() 25.5293 27.4649 30.3495 30.2533 31.4267 68.6930 100
I would deeply appreciate your support in case you know how to speed up my for loop using a neat vectorized solution. Is this even possible?